
 DSA-CL III — WINTER TERM 2018-19

DATA STRUCTURES AND ALGORITHMS
FOR COMPUTATIONAL LINGUISTICS III

CLAUS ZINN

Çağrı Çöltekin

https://dsacl3-2018.github.io

https://dsacl3-2018.github.io

 2

What is DSA-CL III?

・Intermediate-level survey course.

・Programming and problem solving, with applications.

– Algorithm: method for solving a problem.

– Data structure: method to store information.

・Second part focused on Computational Linguistics

Prerequisites:

・Data Structures and Algorithms for CL I

・Data Structures and Algorithms for CL II

Lecturers:

・Çağrı Çöltekin

・Claus Zinn

Course Materials: https://dsacl3-2018.github.io

DSA-CL III course overview

Tutors:

・Marko Lozajic

・Michael Watkins

Slots:

・Mon 12:15 & 18:00 (R 0.02)

・Wed 14:15 — 18:00 (lab)

https://dsacl3-2018.github.io

 3

Reading material for most lectures

Weekly programming assignments

Four graded assignments. 60%

・Due on Tuesdays at 11pm via electronic submission (Github Classroom)

・Collaboration/lateness policies: see web.

 
Written exam. 40%

・Midterm practice exam 0%

・Final exam 40%

 

Coursework and grading

 4

Honesty statement:

・Feel free to cooperate on assignments that are not graded.

・Assignments that are graded must be your own work. Do not:

– Copy a program (in whole or in part).

– Give your solution to a classmate (in whole or in part).

– Get so much help that you cannot honestly call it your own work.

– Receive or use outside help.

・Sign your work with the honesty statement (provided on the website).

・Above all: You are here for yourself, practice makes perfection.

 

Honesty Statement

Organisational issues

 5

Presence:

・A presence sheet is circulated purely for statistics.

・Experience: those who do not attend lectures or do not make the

assignments usually fail the course.

・Do not expect us to answer your questions if you were not at the

lectures.

Office hours:

・Office hour: Monday, 14:00-15:00, please make an appointment!

・Please ask questions about the material presented in the lectures

during the lectures — Everyone benefits

・We will discuss each assignment that is not graded during the next

lab.

Registration:

・Do the first assignment, A0.

Assignment Process

Walk-Through

GIT Classroom

 6

Required reading.

・Algorithms 4th edition by R. Sedgewick and K. Wayne,

Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

– Readable from university network thru Safari books:

– see proquest.tech.safaribooksonline.de/

9780132762571  

 7

Resources (textbook)

	 	 	 	

SEDGEWICK

WAYNE

$34.99 U.S. | $41.99 CANADA

Algorithms
F O U R T H E D I T I O N

Essential Information about Algorithms
and Data Structures

A C L A S S I C R E F E R E N C E
The latest version of Sedgewick’s best-selling series,
reflecting an indispensable body of knowledge developed
over the past several decades.

B R O A D C O V E R A G E
Full treatment of data structures and algorithms for sorting,
searching, graph processing, and string processing,
including fifty algorithms every programmer should know.
See algs4.cs.princeton.edu/code.

C O M P L E T E LY R E V I S E D C O D E
New Java implementations written in an accessible
modular programming style, where all of the code
is exposed to the reader and ready to use.

E N G A G E S W I T H A P P L I C AT I O N S
Algorithms are studied in the context of important scientific,
engineering, and commercial applications. Clients and
algorithms are expressed in real code, not the pseudo-code
found in many other books.

I N T E L L E C T U A L LY S T I M U L AT I N G
Engages reader interest with clear, concise text, detailed
examples with visuals, carefully crafted code, historical and
scientific context, and exercises at all levels.

A S C I E N T I F I C A P P R O A C H
Develops precise statements about performance, supported
by appropriate mathematical models and empirical studies
validating those models.

I N T E G R AT E D W I T H T H E W E B
Visit algs4.cs.princeton.edu for a freely accessible,
comprehensive Web site, including text digests, program
code, test data, programming projects, exercises, lecture
slides, and other resources.

informit.com/aw | algs4.cs.princeton.edu

CONTENTS

 FUNDAMENTALS
 Programming Model
 Data Abstraction
 Bags, Stacks, and Queues
 Analysis of Algorithms
 Case Study: Union-Find

 SORTING
 Elementary Sorts
 Mergesort
 Quicksort
 Priority Queues
 Applications

 SEARCHING
 Symbol Tables
 Binary Search Trees
 Balanced Search Trees
 Hash Tables
 Applications

 GRAPHS
 Undirected Graphs
 Directed Graphs
 Minimum Spanning Trees
 Shortest Paths

 STRINGS
	 String Sorts
 Tries
 Substring Search
 Regular Expressions
 Data Compression

 CONTEXT

Cover design by Chuti Prasertsith

 Text printed on recycled paper

ISBN-13:
ISBN-10:

978-0-321-57351-3
0-321-57351-X

9 7 8 0 3 2 1 5 7 3 5 1 3

5 7 9 9 9

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

A
lgorithm

s
F

O
U

R
T

H

E
D

I
T

I
O

N

・Speech and Language Processing, Jurafsky & Martin, 2nd

Edition, Prentice Hall

– Draft chapters of 3rd. edition available

– see web.stanford.edu/~jurafsky/slp3/  
 

・Dependency Parsing, Kübler, McDonald & Nivre, Morgan

& Claypool  

http://proquest.tech.safaribooksonline.de/9780132762571
http://proquest.tech.safaribooksonline.de/9780132762571
http://proquest.tech.safaribooksonline.de/9780132762571
http://web.stanford.edu/~jurafsky/slp3/

 
Book site for first part of class

・Brief summary of content.

・Download code from book.

・APIs and Javadoc.

 8

Resources (web)

http://algs4.cs.princeton.edu

 9

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...  

Biology. Human genome project, protein folding, … 

Computers. Circuit layout, file system, compilers, … 

Computer graphics. Movies, video games, virtual reality, … 

Security. Cell phones, e-commerce, voting machines, … 

Multimedia. MP3, JPG, DivX, HDTV, face recognition, …  

Social networks. Recommendations, news feeds, advertisements, …  

Physics. N-body simulation, particle collision simulation, … 

 ⋮

Why study algorithms?

 10

Their impact is broad and far-reaching.

Why study algorithms?

 11

For intellectual stimulation.

Why study algorithms?

“ An algorithm must be seen to be believed. ” — Donald Knuth

“ For me, great algorithms are the poetry of computation. Just  
 like verse, they can be terse, allusive, dense, and even mysterious.  
 But once unlocked, they cast a brilliant new light on some  
 aspect of computing. ” — Francis Sullivan

2 COMPUTING IN SCIENCE& ENGINEERING

Computational algorithms are probably as old as civilization.
Sumerian cuneiform, one of the most ancient written records,
consists partly of algorithm descriptions for reckoning in base
60. And I suppose we could claim that the Druid algorithm for
estimating the start of summer is embodied in Stonehenge.
(That’s really hard hardware!)

Like so many other things that technology affects, algo-
rithms have advanced in startling and unexpected ways in the
20th century—at least it looks that way to us now. The algo-
rithms we chose for this issue have been essential for progress
in communications, health care, manufacturing, economics,
weather prediction, defense, and fundamental science. Con-
versely, progress in these areas has stimulated the search for
ever-better algorithms. I recall one late-night bull session on
the Maryland Shore when someone asked, “Who first ate a
crab? After all, they don’t look very appetizing.’’ After the usual
speculations about the observed behavior of sea gulls, someone
gave what must be the right answer—namely, “A very hungry
person first ate a crab.”

The flip side to “necessity is the mother of invention’’ is “in-
vention creates its own necessity.’’ Our need for powerful ma-
chines always exceeds their availability. Each significant com-
putation brings insights that suggest the next, usually much
larger, computation to be done. New algorithms are an attempt
to bridge the gap between the demand for cycles and the avail-
able supply of them. We’ve become accustomed to gaining the
Moore’s Law factor of two every 18 months. In effect, Moore’s
Law changes the constant in front of the estimate of running
time as a function of problem size. Important new algorithms
do not come along every 1.5 years, but when they do, they can
change the exponent of the complexity!

For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even

mysterious. But once unlocked, they cast a brilliant new light
on some aspect of computing. A colleague recently claimed
that he’d done only 15 minutes of productive work in his
whole life. He wasn’t joking, because he was referring to the
15 minutes during which he’d sketched out a fundamental op-
timization algorithm. He regarded the previous years of
thought and investigation as a sunk cost that might or might
not have paid off.

Researchers have cracked many hard problems since 1 Jan-
uary 1900, but we are passing some even harder ones on to the
next century. In spite of a lot of good work, the question of
how to extract information from extremely large masses of
data is still almost untouched. There are still very big chal-
lenges coming from more “traditional” tasks, too. For exam-
ple, we need efficient methods to tell when the result of a large
floating-point calculation is likely to be correct. Think of the
way that check sums function. The added computational cost
is very small, but the added confidence in the answer is large.
Is there an analog for things such as huge, multidisciplinary
optimizations? At an even deeper level is the issue of reason-
able methods for solving specific cases of “impossible’’ prob-
lems. Instances of NP-complete problems crop up in at-
tempting to answer many practical questions. Are there
efficient ways to attack them?

I suspect that in the 21st century, things will be ripe for an-
other revolution in our understanding of the foundations of
computational theory. Questions already arising from quan-
tum computing and problems associated with the generation
of random numbers seem to require that we somehow tie to-
gether theories of computing, logic, and the nature of the
physical world.

The new century is not going to be very restful for us, but it
is not going to be dull either!

THEJOY OF ALGORITHMS

Francis Sullivan, Associate Editor-in-Chief

THE THEME OF THIS FIRST-OF-THE-CENTURY ISSUE OF COMPUTING IN

SCIENCE & ENGINEERING IS ALGORITHMS. IN FACT, WE WERE BOLD

ENOUGH—AND PERHAPS FOOLISH ENOUGH—TO CALL THE 10 EXAMPLES WE’VE SE-

LECTED “THE TOP 10 ALGORITHMS OF THE CENTURY.”

F R O M T H E
ED I T O R S

 12

To become a proficient programmer.

Why study algorithms?

“ I will, in fact, claim that the difference between a bad programmer

 and a good one is whether he considers his code or his data structures

 more important. Bad programmers worry about the code. Good

 programmers worry about data structures and their relationships. ”

 — Linus Torvalds (creator of Linux)

“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth

They may unlock the secrets of life and of the universe.

 13

Why study algorithms?

“ Computer models mirroring real life have become crucial for most  
 advances made in chemistry today…. Today the computer is just as  
 important a tool for chemists as the test tube. ”  
 — Royal Swedish Academy of Sciences  
 (Nobel Prize in Chemistry 2013)

Martin Karplus, Michael Levitt, and Arieh Warshel

For fun and profit.

 14

Why study algorithms?

・Their impact is broad and far-reaching.

・Old roots, new opportunities.

・For intellectual stimulation.

・To become a proficient programmer.

・They may unlock the secrets of life and of the universe.

・To solve problems that could not otherwise be addressed.

・Everybody else is doing it.

・For fun and profit.

 15

Why study algorithms?

Why study anything else?

 16

What's ahead

What’s Ahead

 17

Sorting

 18

Undirected Graphs

 19

Directed Graphs

 20

String Distance

 21

Finite State Automata

 22

0 2a 1

c

c

b

n
o
u

m
r

l

a

m
t l

d

a

h

Parsing

 23

First Dive

Language Guessing

 24

Language Guessing

Applications:

・Spamassassin uses the guessed language as a feature in spam

identification.

・Web browsers language identification to offer you to translate a page

when it is not in your native language.

・Google Translate uses language identification to determine the source

language of a text to be translated.

・The CLARIN Language Resource Switchboard uses language

identification (together with the identification of the resource’s media

type) to determine tools that can process the resource.

 25

Language I

 26

Language II

 27

Language III

 28

Language IV

 29

Language V

 30

Any Ideas

Language Guessing

・Any ideas

・(Brainstorming)

 31

Method

・We can make a computer guess the language:

– Using simple n-gram statistics

– Using a small amount of training data

– With high accuracy

・Here we will discuss the method of Cavnar and Trenkle, 1994

 32

・We can usually identify a language using only a very short fragment.

E.g.:

– German: plötzlichen Ausbruch des Vulkans Ontake in Japan

– English: cross-country navigational exercise and made a banking

– Spanish: provenientes del idioma japonés que describen una

・Some examples of n-grams that frequently occur these languages:

– German: ung, chen, der, die, ö

– English: th, y_, ed_, wh

– Spanish: la, que, ió, los_

How much information is needed

・If we were to build a model of a couple of languages, how much

information do we need per language to classify most texts correctly?

・To find an answer to this question, we look at Zipf’s law:

– The frequency of a word is inversely proportional to its frequency-

based rank

・That is,

– the most frequent word will occur approximately twice as many times

as the second most frequent word,

– thrice as many times as the third most frequent word etc.

 33

Distributions of tokens in TüBa-D/Z

 34

Distributions of character trigrams in TüBa-D/Z

 35

Lessons Learned

・A small number of n-grams pop up ’all over the place’;

・consequently, only a small number of n-grams are effective indicators;

・documents from a language should have similar n-gram frequency

distributions.

 36

・Cavnar and Trenkle create a profile of a language using a small amount of

text in the following manner:

– Count each 1..5-gram in the text

– Sort the n-grams by frequency (most frequent first)

– Retain the 300 most frequent n-grams

・Note: Cavnar and Trenkle discard all characters that are not letters or

quotes.

Example: bananas

 37

Example: bananas

 38

Language identification

・Generate a profile for each language, based on a longer text. When

classifying the language of a document:

– Create a profile of the document.

– Compare the profile of the document with the profile of each

language.

– Choose the language with the most similar profile.

・How do we compare two profiles?

 39

Example & Algorithm

 40

Method Evaluation

 41

Complications

The classification problem can be made more complicated by:

– Adding more languages

– Adding languages that are very similar

– Adding dialects

– Identification of very short fragments

– Documents with multiple languages

 42

• Apache OpenNLP includes char n-gram based statistical detector and

comes with a model that can distinguish 103 languages

• Apache Tika contains a language detector for 18 languages

• There are newer methods that use more sophisticated statistical

modeling and/or machine learning to identify languages.

Practicals

Maven

 43

Maven

Apache Maven is a tool for building and managing Java projects.

Advantages of Maven are:

・Declarative: you do not have to specify the steps to build a project.

・Dependency management: you specify the dependencies of your project

and Maven will automatically download them and make them available

in the classpath.

・IDE agnostic: all major IDEs (including IntelliJ, NetBeans, and Eclipse)

have plugins for Maven, meaning that you can open a Maven project in

any IDE.

・Plugins: the functionality of Maven can easily be extended using

plugins.

 44

Maven Project Layout

・pom.xml Maven project description

・src/main Main project sources

– java Main Java sources

– resources Resources

・src/test Test sources

– java Java sources for tests

– resources Resources for tests

 45

Dependencies:

・Many Java libraries are in the Maven Central Repository

– search.maven.org

・Usually, you will find a fragment on the website of a project.

http://search.maven.org

Basic Maven Commands

・# Clean up a project (remove compiled Java code)

– mvn clean

・# Compile a project

・mvn compile

・# Run unit tests

– mvn test

 46

