AlgOnth mS ROBERT SEDGEWICK | KEVIN WAYNE

1.4 ANALYSIS OF

> Introduction

> observations

> mathematical models

> order-of-growth classifications
> theory of algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > memory

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

1.4 ANALYSIS OF

> [ntroduction

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Running time

“As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? ©’ — Charles Babbage (1564)

how many times do you

have to turn the crank?

Nl

Analytic Engine

Cast of characters

Programmer needs to develop
a working solution. <

Student might play

Client wants to solve / any or all of these

problem efficiently. roles someday.

Theoretician wants
to understand.

Reasons to analyze algorithms

Predict performance. \

. (0
Compare algorithms. this course)

/

Provide guarantees.

Understand theoretical basis. <«<— theory of algorithms (another course)

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer

did not understand performance characteristics

Some algorithmic successes

Discrete Fourier transform.
 Break down waveform of N samples into periodic components.
 Applications: DVD, JPEG, MRI, astrophysics,

e Brute force: N2 steps. Friedrich Gauss
1805

 FFT algorithm: Nlog N steps, enables new technology.

time
! quadratic
64T

32T —

16T —)))
linearithmic

8T — :
linear

1 | |
size — 1K 2K 4K 8K

Some algorithmic successes

N-body simulation.
« Simulate gravitational interactions among N bodies.

« Brute force: N2 steps. -
B A R
e Barnes-Hut algorithm: Nlog N steps, enables new research. Andrew Appel

PU '81

time
! quadratic
64T —
32T —
16T —)))
linearithmic
8T — :
linear

1 | |
size — 1K 2K 4K 8K

The challenge

Q. Will my program be able to solve a large practical input?

Why is my progw Why does it run out of mw

\

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.
 Observe some feature of the natural world.
 Hypothesize a model that is consistent with the observations.
* Predict events using the hypothesis.
» Verify the predictions by making further observations.

Validate by repeating until the hypothesis and observations agree.

Principles.
 Experiments must be reproducible.
 Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

1.4 ANALYSIS OF

» observations

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Example: 3-Sum

3-SuM. Given N distinct integers, how many triples sum to exactly zero?

% more Sints. txt
8 30 -40 10 0
30 -40 -20 -10 40 0 10 5

, 30 -20 10 0
% java ThreeSum 8ints.txt _40 40 0 0
4 3
10 0 10 0
4

0

M L L L
mtma&&mmm R

Context. Deeply related to problems in computational geometry.

11

3-SUM: brute-force algorithm

public class ThreeSum

{
public static 1nt count(int[] a)

{

int N = a.length;

int count = 0;

for (int i = 0; i < N; i++)

for (Ant j = 1+1; J < N; J++)
for (int k = j+1; k < N; k++)
1f (a[1] + a[j] + alk] == 0)
count++;
return count;

public static void main(String[] args)
{
In in = new In(args[0]);
int[] a = in.readAll1Ints();
StdOut.printlin(count(a));

check each triple

for simplicity, ignore

integer overflow

12

Measuring the running time

Q. How to time a program?
A. Manual.

% java ThreeSum 1Kints.txt

70

tick tick tick

% java ThreeSum 2Kints.txt

528

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

% java ThreeSum 4Kints.txt

4039

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

13

Measuring the running time

Q. How to time a program?
A. Automatic.

public class Stopwatch (partof stdlib.jar)

Stopwatch() create a new stopwatch

double el apsedTi me () time since creation (in seconds)

public static void main(String[] args)

{
In in = new InCargs[0]);
int[] a = in.readAl1Ints(Q);
Stopwatch stopwatch = new Stopwatch();
StdOut.printin(ThreeSum.count(a));
double time = stopwatch.elapsedTime();
StdOut.println("elapsed time " + time);

14

Empirical analysis

Run the program for various input sizes and measure running time.

% |

15

Empirical analysis

Run the program for various input sizes and measure running time.

250 0
500 0
1.000 0,1
2.000 0,8
4.000 6,4
8.000 51,1

16.000 ?

Data analysis

Standard plot. Plot running time T(N) vs. input size N.

standard plot 5

running time T(N)
w I
o o

N
o

10

1K 2K 4K 8K
problem size N

17

Data analysis

Log-log plot. Plot running time T'(N) vs. input size N using log-log scale.

log-logplot 57,2 - straight line
of slope 3
25.6 — ™~

12.8 lg(T'(N))= 31g N + lg a (ais constant)

6.4 —

3.2 equivalent to:

Ig(T(N))

1.6 —
T(N)= a N3,

o0
|

3 orders
of magnitude 2

IK 2K 4K 8K
lgN

slope

T(8000) = 51.1 = a80003 a=>998x10-1l x N3 -
Hypothesis. The running time is about 9.98 x 10 -1! x N3 seconds.

18

Prediction and validation

Hypothesis. The running time is about 9.98 x 10 -1 x N3 seconds.

Predictions.

e 51.1 seconds for N = 8,000.
e 408.8 seconds for N =16,000.

Observations.

8.000 51,1
8.000 51
8.000 51,1
16.000 410,8

validates hypothesis!

N\

"order of growth" of running

time is about N3 [stay tuned]

19

Doubling hypothesis

Doubling hypothesis. Quick way to estimate 4 in a power-law relationship.

Run program, doubling the size of the input.

500 0
1.000 0,1
2.000 0,8
4.000 6,4
8.000 51,1

Hypothesis. Running time is

250 0) -

T(N) aN®
— 9b
4,8 2,3
6,9 2,8
7,7 2,9
8 3 <«— 1g(6.4/0.8=3.0
8 ~3

T

seems to converge to a constant b=~3

about a N? with b =lg ratio.

20

Doubling hypothesis

Doubling hypothesis. Quick way to estimate 4 in a power-law relationship.

Q. How to estimate a (assuming we know b) ?
A. Run the program (for a sufficient large value of N) and solve for a.

8.000 51,1

51.1 = a x 80003
8.000 > — g = 0.998 x 10 -10
8.000 51,1

Hypothesis. Running time is about 0.998 x 10 -10 x N 3 secondSs.

21

Experimental algorithmics

System independent effects.

* A|90Fithm- determines exponent k
o Input data. in power law

g .
System dependent effects. > etermines constant

in power law

 Hardware: CPU, memory, cache, ...
» Software: compiler, interpreter, garbage collector, ...

« System: operating system, network, other apps, ...)

Bad news. Difficult to get precise measurements.
Good news. Much easier and cheaper than other sciences.

AN

e.g., can run huge number of experiments

22

1.4 ANALYSIS OF

» mathematical models

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

 Need to analyze program to determine set of operations.
 Cost depends on machine, compiler.

* Frequency depends on algorithm, input data.

311 THE CLASSIC WORK THE CLASSIC WORK
VLY NEWLY UPDATED AND REVISED EXTENDED AND REFINED
The Art of The Art of The Art of The Art of
Computer Computer Computer Computer
Programming Programming Programming Programming
VOLI'M VOLUME 2 VOLUME 4A
I | | Algoritl Seminumerical Algorithms i i Combinatorial Algorithms
Third Edition Part 1
DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH Donald Knuth

1974 Turing Award

In principle, accurate mathematical models are available.

Cost of basic operations

Challenge. How to estimate constants.

operation example nanoseconds

integer add a+b
integer multiply a*b
integer divide a/b
floating-point add a+b
floating-point multiply a*b
floating-point divide a/b
sine Math.sin(theta)
arctangent Math.atan2(y, x)

T Running OS X on Macbook Pro 2.2GHz with 2GB RAM

2,1
2,4
5,4
4,6
4,2
13,5
91,3

129

25

Cost of basic operations

Observation. Most primitive operations take constant time.

operation EE nanoseconds

variable declaration int a C1
assignment statement a=> C2
integer compare a<b C3
array element access a[i] C4
array length a.length Cs
1D array allocation nhew int[N] ce N
2D array allocation hew int[N][N] c7 N?

Caveat. Non-primitive operations often take more than constant time.

\

novice mistake: abusive string concatenation

26

Example: 1-SuM

Q. How many instructions as a function of input size N?

int count = 0;

for (int i = 0; i < N; i++)
1f (ali]l+w== 0)

count++;

N array accesses

variable declaration 2
assignment statement 2
less than compare N+1
equal to compare N
array access N

increment Nto2 N

27

Example: 2-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (Ant 1 = 0; 1 < N; 1++)
for (int j = i+1l; j < N; j++)
if (afil] [J] 0)

count++;

0+1+2+...+(N—1)
Pf. [n even]

1 1
Ot =2, = (A = 1) = 5N2 - N

half of half of

28

Example: 2-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (int 1 = 0; i < N; i++)
for (int j = i+1l; j < N; j++)
it (a[1] [J] 0)

count++;

variable declaration 3
assignment statement 3
less than compare WIN+1)(N+2) A
equal to compare WN(N-1)
array access N(N-1)
increment WNIN-1)TON(N-1)

0+142+...+(N—-1) =

tedious to count exactly

29

Simplifying the calculations

“ It is convenient to have a measure of the amount of work involved
in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions
of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of

multiplications and recordings. © — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known °‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no
exponential build-up need occur.

30

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

int count = 0;
for (int 1 = 0; i < N; i++)
for (int j = i+1; j < N; Jj++)
it (a[1] [J] 0)

count++;

0+142+...+(N—-1) =

L
2
G
2

variable declaration 3
assignment statement 3
less than compare “(IN+1)(N+2)
equal to compare WN(N-1)
array access N(N-1) <«— cost model = array accesses
increment BLN(N-1)to N(N-1) (we assume compiler/JVM do not

optimize any array accesses away!)

31

Simplification 2: tilde notation

« Estimate running time (or memory) as a function of input size N.

* Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1. YN3 + 20N + 16 ~ Y6 N3
Ex 2. VeN3 + 100N43 + 56 ~ Y6 N3
Ex3. WwWN3-%N2+ 3N ~ Ve N3
- J
Y

discard lower-order terms
(e.g., N=1000: 166.67 million vs. 166.17 million)

Technical definition. fiN) ~g(N) means lim

166,167,000

1
N— 1,000

Leading-term approximation

fIN) _
N=> % ¢(N)

32

Simplification 2: tilde notation

« Estimate running time (or memory) as a function of input size N.
* Ignore lower order terms.

- when N is large, terms are negligible

- when N is small, we don't care

variable declaration N+2 ~N

assignment statement N+2 ~N
less than compare W(IN+1)(N+2) ~1 N2
equal to compare “WN(N-1) ~¥% N2

array access NN -1) ~N?2

increment LWNIN-1)toON(N-1) ~nWN2 to ~N2

Example: 2-Sum

Q. Approximately how many array accesses as a function of input size N ?

int count = 0;
for (int 1 = 0; 1 < N; 1++)

for (int j = 1+1; J < N; J++)

it (ali] | Jv== 0)

count++;

< “inner loop"

0+14+2+...+(N—1)

A. ~ NZ2array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

34

Example: 3-Sum

Q. Approximately how many array accesses as a function of input size N ?

int count = 0;
for (int 1 = 0; 1 < N; 1++)
for (int j = 1+1; J < N; J++)
for (int k = j+1; k < N; k++))
if (al[i] aljlw+ alk] == 0)
count++;

“inner loop"

(N) N(N — g(N —9)

A. ~% N3 array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

35

Diversion: estimating a discrete sum

Q. How to estimate a discrete sum?
Al. Take a discrete mathematics course.
A2. Replace the sum with an integral, and use calculus!

N N 1
EX 1. 1+2+...+N. i~ / vdr ~ = N2
— Y L b
. o
Ex 2. 1k+2k+ ... + Nk >~ /_15’j Uy e Y
i=1 r=
iy N
Ex3. 1+12+13+...+ 1N 2.7 ~ | gl = N

N N N N

N N
1
Ex 4. 3-sum triple loop. S S S 1 ~ / / / dzdydx ~ = N°
p p J - - I ” . y 6

i=1 j=i k=j —T A=Y

36

Estimating a discrete sum

Q. How to estimate a discrete sum?
Al. Take a discrete mathematics course.
A2. Replace the sum with an integral, and use calculus!

Ex4. 1 +% +Va+1%+ ...

SO

1=0

> /1\° 1
— dr = — =~ 1.4427
/x:o (2) S

Caveat. Integral trick doesn't always work!

37

Estimating a discrete sum

Q. How to estimate a discrete sum?
A3. Use Maple or Wolfram Alpha.

3% WolframAlpha pro

\ sum(sum(sum(1, k=j+1..N), j = i+1..N), i = 1..N) E\

& D -8 o = Examples + Random

Sum:

i i [i“ 1]]:éN(N2—3N+2)

i=1\j=i+1\k=j+1

wolframalpha.com

[wayne:nobel.princeton.edu] > maplel5
I\A/ | Maple 15 (X86 64 LINUX)

AN |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc.

\ MAPLE / Al1l rights reserved. Maple is a trademark of
< > Waterloo Maple Inc.
| Type ? for help.
> factor(sum(sum(sum(l, k=j+1..N), j = i+1..N), i = 1..N));

N (N-1) (N- 2)

2011

38

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,
 Formulas can be complicated.
 Advanced mathematics might be required.
 Exact models best left for experts.

costs (depend on machine, compiler)

— 7\ T~

Ivn =c1A +c2B +c3C +caD + csE
A = array access
= integer add
C = integer compare
D = increment
E = variable assignment

frequencies

(depend on algorithm, input)

N/

Bottom line. We use approximate models in this course: T(N) ~ ¢ N3.

39

1.4 ANALYSIS OF

Algorithms

> order-of-growth classifications

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Common order-of-growth classifications

Definition. If f(N) ~c g(N) for some constant ¢ >0, then the order of growth
of f(N) is g().

* Ignores leading coefficient.
* Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N 3.

int count = 0;
for (int i =0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
1if (a[i1] + a[j] + alk] == 0)
count++;

Typical usage. With running times.

AN

depends on machine, compiler, JVM, ...

where leading coefficient

41

Common order-of-growth classifications

Good news. The set of functions
1, logN, N, Nlog N, N2, N3, and 2V
suffices to describe the order of growth of most common algorithms.

log-log plot
512T 4 = 9 - S
= N & %&(\ g
_ §) \Q‘ ,{\ QJQV
S Q‘QA '{\Q/QV \\A{\
I N AN
1 &
64T -
QO
S -
8T —
4T -
2T — _ '
logarithmic
LN constant
| | | | | | | | | |
1K 2K 4K 8K 512K

size

Typical orders of growth

Common order-of-growth classifications

order of
growth

typical code framework

description example

T(2N) | T(N)

log N

Nlog N

2N

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

while (N > 1)
{ N=N/2; ... }

for (Ant i = 0; 1 < N; i++)

{ ... }

[see mergesort lecture]

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{ ... }

for (int i = 0; 1 < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
{ ... }

[see combinatorial search lecture]

add two

statement
numbers

divide in half binary search

find the
loop _
maximum
divide
mergesort
and conquer
check all
double loop _
pairs
_ check all
triple loop _
triples
exhaustive check all
search subsets

T(N)

43

Practical implications of order-of-growth

problem size solvable in minutes

1970s 1980s 1990s 2000s

log N
. tens of hundreds of o
N millions . . billions
millions millions
hundreds of . . hundreds of
N log N millions millions o
thousands millions
tens of
N2 hundreds thousand thousands
thousands
N3 hundred hundreds thousand thousands
2N 20 20s 20s 30

Bottom line. Need linear or linearithmic alg to keep pace with Moore's law.

Practical implications of order-of-growth

problem size solvable in minutes time to process millions of inputs

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

log N
hundreds
. tens of . . .
N millions o of billions minutes seconds second instant
millions o
millions
hundreds hundreds tens of
N log N of millions millions of hour minutes seconds seconds
thousands millions
N2 hundreds thousand thousands tens of decades years months weeks
thousands
N3 hundred hundreds thousand thousands millennia

45

Practical implications of order-of-growth

N log N

N2

N3

2N

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

description

independent of input size

nearly independent of input size

optimal for N inputs

nearly optimal for N inputs

not practical for large problems

not practical for medium problems

useful only for tiny problems

effect on a program that
runs for a few seconds

time for 100x
more data

a few minutes

a few minutes

several hours

several weeks

forever

size for 100x
faster computer

100x

100x

10x

4-5x

1x

46

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
 Too small, go left.

 Too big, go right. @
* Equal, found.

successful search for 33

6 13 14 25 33 43 5] 53 64 72 84 93 95 96 97

47

Binary search: Java implementation

Trivial to implement?
* First binary search published in 1946.
* First bug-free one in 1962.
 Bug in Java's Arrays.binarySearch() discovered in 2006.

public static int binarySearch(int[] a, 1nt key)

{
int lo = 0, hi = a.length-1;
while (lo <= hi)
{
int mid = 1o + (h1 - 1o) / 2;
if (key < a[mid]) hi1 = mid - 1; < one "3-way compare"
else if (key > a[mid]) 1o = mid + 1;
else return mid;
}
return -1;
}

Invariant. If key appears in the array a[], then a[lo] < key =< a[h1i].

48

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 +1g N key compares to search in
a sorted array of size MN.

Def. T(N) = # key compares to binary search a sorted subarray of size < V.

Binary search recurrence. T(N) < T(N/2) + 1 for N > 1, with T(1) = 1.
t t

left or right half possible to implement with one

(floored division) 2-way compare (instead of 3-way)

Proof sketch. [assume N is a power of 2]

T(N) < TN/2) +1 [given]
< TWN/4) +1+1 [apply recurrence to first term]
< TWN/8 +1+1+1 [apply recurrence to first term]
< TWN/N+1+1+ ...+ 1 [stopapplying, T(1)=1]

= 1+ 1gN

49

An N2 log N algorithm for 3-Sum

Algorithm.
e Step 1: Sort the N (distinct) numbers.
e Step 2: For each pair of numbers a[i]

and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is N2 log N.
o Step 1: N2 with insertion sort.
o Step 2: N2log N with binary search.

Remark. Can achieve N2 by modifying
binary search step.

input

30 -40 -20 -10 40 O 10 5

sort

-40 -20 -10

binary search

(-40,
(-40,
(-40,
(-40,
(-40,

(_205

(_105

¢ 10,

¢ 10,
C 30,

0 5 10

30 40

only count if

ali] < alj] < a[k]

A,e'(

to avoid

double counting

50

Comparing programs

Hypothesis. The sorting-based N2log N algorithm for 3-SuMm is significantly
faster in practice than the brute-force N3 algorithm.

- time (seconds) “ time (seconds)

1.000 1.000
2.000 0,8 2.000 0,18
4.000 6,4 4.000 0,34
8.000 51,1 8.000 0,96
ThreeSum.java 16.000 3,67
32.000 14,88
64.000 59,16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth = faster in practice.

1.4 ANALYSIS OF

Algorithms

> theory of algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Types of analyses

Best case. Lower bound on cost.
 Determined by “easiest” input.
* Provides a goal for all inputs.

Worst case. Upper bound on cost. \
 Determined by “most difficult” input.
* Provides a guarantee for all inputs.

Average case. Expected cost for random input.
 Need a model for “random” input.

* Provides a way to predict performance.)

Ex 1. Array accesses for brute-force 3-Sum. Ex 2. Compares for binary search.
Best: ~ 1 N3 Best: ~ 1

Average: ~ N3 Average: ~ IgN

Worst: ~ 1 N3 Worst: ~ lg N

53

Theory of algorithms

Goals.
» Establish “difficulty” of a problem.
* Develop “optimal” algorithms.

Approach.
* Suppress details in analysis: analyze “to within a constant factor.”
* Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.
Lower bound. Proof that no algorithm can do better.
Optimal algorithm. Lower bound = upper bound (to within a constant factor).

54

Commonly-used notations in the theory of algorithms

Y2 N2
asymptotic 10 N2 classif
Big Theta ymp O(N?) _ Y
order of growth 5N2+22Nlog N+ 3N algorithms
ION?2
100 N develo
Big Oh O(N?) and smaller O(N?) P
22 NlogN+3 N upper bounds
Yo N2
: N5 develop
Big Omega O(N2) and larger Q(N?2)

N3+22NlogN+3N lower bounds

Big Oh, Omega and Theta

k- fin)
‘ k- fin)
I'(n) = 0(f(n)) < I(n) <k-f(n), n>n, I(n) =$2(f(n)) < T(n) 2 k-f(n), n>n,

ky-n

running time

k" n

I'(n) = O(f(n) < ki - f(n) <T(n) <k, - f(n), n>ng

Theory of algorithms: example 1

Goals.

» Establish “difficulty” of a problem and develop “optimal” algorithms.
* Ex. 1-Sum = “Is there a O in the array? "

Upper bound. A specific algorithm.
* Ex. Brute-force algorithm for 1-Sum: Look at every array entry.
 Running time of the optimal algorithm for 1-Sum is O(N).

Lower bound. Proof that no algorithm can do better.
 Ex. Have to examine all N entries (any unexamined one might be 0).
« Running time of the optimal algorithm for 1-SuM is Q).

Optimal algorithm.

 Lower bound equals upper bound (to within a constant factor).
e Ex. Brute-force algorithm for 1-SuMm is optimal: its running time is O(N).

57

Theory of algorithms: example 2

Goals.
» Establish “difficulty” of a problem and develop “optimal” algorithms.
 Ex. 3-Sum.

Upper bound. A specific algorithm.
* Ex. Brute-force algorithm for 3-Sum.
 Running time of this algorithm for 3-SuM is O(N 3).

58

Theory of algorithms: example 2

Goals.

» Establish “difficulty” of a problem and develop “optimal” algorithms.
 Ex. 3-Sum.

Upper bound. A specific algorithm.
* Ex. Improved algorithm for 3-Sum.
e Running time of the improved algorithm for 3-Sum is O(N2log N).

Lower bound. Proof that no algorithm can do better.
 Ex. Have to examine all N entries to solve 3-Sum.
e Running time of the optimal algorithm for solving 3-Sum is Q(N).

Open problems.
* Optimal algorithm for 3-Sum?
» Subquadratic algorithm for 3-Sum?
e Quadratic lower bound for 3-Sum?

59

Algorithm design approach

Start.
* Develop an algorithm.
* Prove a lower bound.

Gap?
* Lower the upper bound (discover a new algorithm).
e Raise the lower bound (more difficult).

Golden Age of Algorithm Design.
e 1970s-.
» Steadily decreasing upper bounds for many important problems.
 Many known optimal algorithms.

Caveats.
* Overly pessimistic to focus on worst case?
 Need better than “to within a constant factor” to predict performance.

60

Commonly-used notations in the theory of algorithms

10 N2 provide
Tilde leading term ~10 N2 ION2+22 Nlog N approximate
ION2+2 N+ 37 model

Common mistake. Interpreting big-Oh as an approximate model.
This course. Focus on approximate models: use Tilde-notation

61

1.4 ANALYSIS OF

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > memory

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Basics

Bit. O or 1. NIST most computer scientists

Byte. 8 bits. | |
Megabyte (MB). 1 million or 220 bytes.
Gigabyte (GB). 1 billion or 230 bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.
 Can address more memory. N

e Pointers use more space. some JVMs "compress” ordinary object
pointers to 4 bytes to avoid this cost

63

Typical memory usage for primitive types and arrays

boolean char[] 2N+ 24
byte 1 int[] 4N+ 24
char 2 double[] 8N+ 24
int 4 one-dimensional arrays

float 4
long 8
double 8
char[][] ~2MN
primitive types
int[][] ~4MN
double[][] ~8MN

two-dimensional arrays

64

Typical memory usage for objects in Java

Object overhead. 16 bytes.
Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

public class Date

{
private int day;
private int month;
private int year;
}

object
overhead

day

month

year

padding

=,

int
alues

16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)

32 bytes

65

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 2. Avirgin String of length N uses ~ 2N bytes of memory.

public class String

{

private
private
private
private

char[] value;
int offset;
int count;
int hash;

object
overhead

value

offset

count

hash

padding

—— reference

‘T\ int
o Vvalues

16 bytes (object overhead)

8 bytes (reference to array)
2N + 24 bytes (char[] array)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)

2N + 64 bytes

66

Typical memory usage summary

Total memory usage for a data type value:
* Primitive type: 4 bytes for int, 8 bytes for doubTe, ...

Object reference: 8 bytes.

Array: 24 bytes + memory for each array entry.

Object: 16 bytes + memory for each instance variable.
Padding: round up to multiple of 8 bytes. N

+ 8 extra bytes per inner class object

(for reference to enclosing class)

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference,
count memory (recursively) for referenced object.

67

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N7

Use tilde notation to simplify your answer.

public class WeightedQuickUnionUF

{

private int[] 1d;
private int[] sz;
private int count;

public WeightedQuickUnionUF(int N)

O; 1 < N; 1++) 1d[1]
O; 1 < N; 1++) sz[1]

{
id = new 1nt[N];
sz = new 1nt[N];
for (int 1 =
for (int 1 =

}

A. 8 N+ 88 ~ 8 N bytes.

16 bytes
(object overhead)

D ——

«——— 8+ (4N + 24) bytes each

(reference + int[] array)
<«——— 4 bytes (int)

<«—— 4 bytes (padding)

8N + 88 bytes

68

Turning the crank: summary

Empirical analysis.
 Execute program to perform experiments.

 Assume power law and formulate a hypothesis for running time.
 Model enables us to make predictions.

Mathematical analysis.

* Analyze algorithm to count frequency of operations.
* Use tilde notation to simplify analysis.
« Model enables us to explain behavior.

Scientific method.
 Mathematical model is independent of a particular system;
applies to machines not yet built.

 Empirical analysis is necessary to validate mathematical models
and to make predictions.

69

