A I g O r|th m S ROBERT SEDGEWICK | KEVIN WAYNE

2.3 PARTITIONING DEMOS

» Sedgewick 2-way partitioning

> Dijkstra 3-way partitioning

> Bentley-Mcllroy 3-way partitioning
> dual-pivot partitioning

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.3 PARTITIONING DEMOS

» Sedgewick 2-way partitioning

Algorithms

http://algs4.cs.princeton.edu

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).

 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).

 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop j scan and exchange ali] with aj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop j scan and exchange ali] with aj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

L E
)))
lo i J

stop j scan and exchange ali] with aj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

) t1

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop j scan because a[j] <= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

When pointers cross.
 Exchange a[1o] with a[j].

pointers cross: exchange a[lo] with alj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

When pointers cross.
 Exchange a[1o] with a[j].

partitioned!

2.3 PARTITIONING DEMOS

> Dijkstra 3-way partitioning

Algorithms

http://algs4.cs.princeton.edu

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.

- (ali]

- (afi]

- (ali]

It i

vy

-
)

lo

< v): exchange a[1t] with a[i]; increment both 1t and i
> v): exchange a[gt] with a[i]; decrement gt
== v). Increment i

gt
v
B X W P P V P D P C Y /
)
hi
invariant
<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1
|t | gt
v v v

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1
|t | gt
v v v

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1
|t | gt
v v v

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1
|t | gt
v v v

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

|t i gt

\

v \
BRI - - -

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

|t i gt

v vy
B - -

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1
|t i gt
v Vv
B -

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

|t gt i

v v v

invariant

<V =V >V

Tt 1 gt

Dijkstra 3-way partitioning demo

* Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i]l > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == Vv): Increment 1

|t gt

v v

invariant

<V =V >V

Tt 1 gt

2.3 PARTITIONING DEMOS

Al gor ithms > Bentley-Mcllroy 3-way partitioning

http://algs4.cs.princeton.edu

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

exchange a[i] with a[j]

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

©

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

©

exchange a[i] with a[j]

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

©

exchange a[i] with a[p] and increment p

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
oE
)

lo i

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
oE
)

lo i

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

\
oE
)

lo i j

exchange a[i] with a[j]

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].

* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.
P
\
oo o
)

lo i j

exchange a[j] with a[q] and decrement g

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
KX
)

lo i j

QO

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
KX
)

lo i j

QO

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
KX
)

lo i j

exchange a[i] with a[j]

QO

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.
P
\
K v
)

lo i j

exchange a[i] with a[p] and increment p

QO

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.
P
\
B v o
)

lo i j

exchange a[j] with a[q] and decrement g

QO

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
B v
)

lo i j

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
B v
)

lo i j

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

!
HED v
; X

lo I]

O

Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.

P

v
)

lo j i

pointers Ccross

O

Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].

P q

v
)

lo j i

exchange a[j] with a[p]

Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].

exchange a[j] with a[p]

Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].

P

v v
1 1 1

lo j i

exchange a[j] with a[p]

Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].

exchange a[i] with a[q]

Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].

))

lo j i

exchange a[i] with a[q]

Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.

e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].

))

lo j i

3-way partitioned

2.3 PARTITIONING DEMOS

Algorithms

> dual-pivot partitioning

http://algs4.cs.princeton.edu

Dual-pivot partitioning demo

Initialization.
e Choose alo] and afhi] as partitioning items.
 Exchange if necessary to ensure ajlo] < ajhi].

exchange a[lo] and afhi]

Dual-pivot partitioning demo

Initialization.
e Choose alo] and afhi] as partitioning items.
 Exchange if necessary to ensure ajlo] < ajhi].

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

(O} 1

lo It i gt hi

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

)) 1

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

))))

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

VA Q T
1 1 t 1 1
lo |t i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

T Q
1 1 t t 1
lo |t i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

Q
1 1 () 1
lo |t i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi

stop when pointers cross

Dual-pivot partitioning demo

Finalize.
 Exchange aflo] with a[--I].
 Exchange afhi] with a[++gt].

o} < pi p1< and < p2 > P2 oF.
))))
lo |t gt hi

Dual-pivot partitioning demo

Finalize.
 Exchange aflo] with a[--I].
 Exchange afhi] with a[++gt].

< Pi1 P1
))
lo It

3-way partitioned

p1 < and < p2

P2

gt

gt

>

P2

