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Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i] with a[j].

stop i scan because ali] >= allo]
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Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
* Scan j from right to left so long as (a[j] > a[lo]).
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When pointers cross.
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Bentley-Mcllroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.
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Phase I. Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
e Scanjfrom right to left so long as (a[i] > a[lo]).
e Exchange aji] with ajj].
* If (afi] == a[lo]), exchange aji] with a[p] and increment p.

* If (a[j] == a[lo]), exchange ajj] with a[q] and decrement q.
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Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].
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Bentley-Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.

e Scanjand p from right to left and exchange ajj] with a[p].
 Scaniand q from left to right and exchange aji] with a[q].
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Dual-pivot partitioning demo

Initialization.
e Choose alo] and afhi] as partitioning items.
 Exchange if necessary to ensure ajlo] < ajhi].

exchange a[lo] and afhi]
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Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[lt] and increment It and i.
* Else if (afi] > alhi]), exchange a[i] with ajgt] and decrement gt.
* Else, increment .

o} < p1 p1< and < p2 ? > P2 P2
1 1 1 t 1
lo |t i gt hi
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lo It i gt hi

exchange ali] and a|lt]; increment It and i
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Finalize.
 Exchange aflo] with a[--I].
 Exchange afhi] with a[++gt].
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) ) ) )
lo |t gt hi




Dual-pivot partitioning demo

Finalize.
 Exchange aflo] with a[--I].
 Exchange afhi] with a[++gt].
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