
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.3 PARTITIONING DEMOS

‣ Sedgewick 2-way partitioning
‣ Dijkstra 3-way partitioning
‣ Bentley-McIlroy 3-way partitioning
‣ dual-pivot partitioning

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

2.3 PARTITIONING DEMOS

‣ Sedgewick 2-way partitioning
‣ Dijkstra 3-way partitioning
‣ Bentley-McIlroy 3-way partitioning
‣ dual-pivot partitioning

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

stop j scan because a[j] <= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

pointers cross: exchange a[lo] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

2.3 PARTITIONING DEMOS

‣ Sedgewick 2-way partitioning
‣ Dijkstra 3-way partitioning
‣ Bentley-McIlroy 3-way partitioning
‣ dual-pivot partitioning

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

P A B X W P P V P D P C Y Z

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A P B X W P P V P D P C Y Z

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P X W P P V P D P C Y Z

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P Z W P P V P D P C Y X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P Y W P P V P D P C Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P C W P P V P D P Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P W P P V P D P Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P D P V W Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C D P P P P P V W Y Z X

lt gti

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C D P P P P P V W Y Z X

lt gt i

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

2.3 PARTITIONING DEMOS

‣ Sedgewick 2-way partitioning
‣ Dijkstra 3-way partitioning
‣ Bentley-McIlroy 3-way partitioning
‣ dual-pivot partitioning

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B X W P P V P D P C Y Z

i j

p q

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B X W P P V P D P C Y Z

i j

p q

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B X W P P V P D P C Y Z

i j

p q

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B X W P P V P D P C Y Z

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B X W P P V P D P C Y Z

i j

p q

hi

exchange a[i] with a[j]

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B C W P P V P D P X Y Z

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B C W P P V P D P X Y Z

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B C W P P V P D P X Y Z

i j

p q

hi

exchange a[i] with a[j]

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P A B C P P P V P D W X Y Z

i j

p q

hi

exchange a[i] with a[p] and increment p

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A P P V P D W X Y Z

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A P P V P D W X Y Z

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A P P V P D W X Y Z

i j

p q

hi

exchange a[i] with a[j]

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A D P V P P W X Y Z

i j

p q

hi

exchange a[j] with a[q] and decrement q

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A D P V P Z W X Y P

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A D P V P Z W X Y P

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A D P V P Z W X Y P

i j

p q

hi

exchange a[i] with a[j]

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P B C A D P V P Z W X Y P

i j

p q

hi

exchange a[i] with a[p] and increment p

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P P C A D B V P Z W X Y P

i j

p q

hi

exchange a[j] with a[q] and decrement q

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P P C A D B V Y Z W X P P

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P P C A D B V Y Z W X P P

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P P C A D B V Y Z W X P P

i j

p q

hi

Bentley-McIlroy 3-way partitioning demo

Phase I. Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[i] > a[lo]).

・Exchange a[i] with a[j].

・If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.

・If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

lo

P P P C A D B V Y Z W X P P

p q

hiij

pointers cross

Bentley-McIlroy 3-way partitioning demo

Phase II. Swap equal keys to the center.

・Scan j and p from right to left and exchange a[j] with a[p].

・Scan i and q from left to right and exchange a[i] with a[q].

lo

P P P C A D B V Y Z W X P P

ij

p q

hi

exchange a[j] with a[p]

Bentley-McIlroy 3-way partitioning demo

Phase II. Swap equal keys to the center.

・Scan j and p from right to left and exchange a[j] with a[p].

・Scan i and q from left to right and exchange a[i] with a[q].

lo

P P B C A D P V Y Z W X P P

ij

p q

hi

exchange a[j] with a[p]

Bentley-McIlroy 3-way partitioning demo

Phase II. Swap equal keys to the center.

・Scan j and p from right to left and exchange a[j] with a[p].

・Scan i and q from left to right and exchange a[i] with a[q].

lo

P D B C A P P V Y Z W X P P

ij

p q

hi

exchange a[j] with a[p]

Bentley-McIlroy 3-way partitioning demo

Phase II. Swap equal keys to the center.

・Scan j and p from right to left and exchange a[j] with a[p].

・Scan i and q from left to right and exchange a[i] with a[q].

lo

A D B C P P P V Y Z W X P P

ij

q

hi

exchange a[i] with a[q]

Bentley-McIlroy 3-way partitioning demo

Phase II. Swap equal keys to the center.

・Scan j and p from right to left and exchange a[j] with a[p].

・Scan i and q from left to right and exchange a[i] with a[q].

lo

A D B C P P P P Y Z W X V P

ij

q

hi

exchange a[i] with a[q]

Bentley-McIlroy 3-way partitioning demo

Phase II. Swap equal keys to the center.

・Scan j and p from right to left and exchange a[j] with a[p].

・Scan i and q from left to right and exchange a[i] with a[q].

lo

A D B C P P P P P Z W X V Y

ij hi

3-way partitioned

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

2.3 PARTITIONING DEMOS

‣ Sedgewick 2-way partitioning
‣ Dijkstra 3-way partitioning
‣ Bentley-McIlroy 3-way partitioning
‣ dual-pivot partitioning

Dual-pivot partitioning demo

Initialization.

・Choose a[lo] and a[hi] as partitioning items.

・Exchange if necessary to ensure a[lo] ≤ a[hi].

S E A Y R L F V Z Q T C M K

lo hi

exchange a[lo] and a[hi]

Dual-pivot partitioning demo

Initialization.

・Choose a[lo] and a[hi] as partitioning items.

・Exchange if necessary to ensure a[lo] ≤ a[hi].

K E A Y R L F V Z Q T C M S

lo hi

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A Y R L F V Z Q T C M S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[lt]; increment lt and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A Y R L F V Z Q T C M S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[lt]; increment lt and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A Y R L F V Z Q T C M S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A M R L F V Z Q T C Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A M R L F V Z Q T C Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A M R L F V Z Q T C Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A M R L F V Z Q T C Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[lt]; increment lt and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F R L M V Z Q T C Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F R L M C Z Q T V Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[lt]; increment lt and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F C L M R Z Q T V Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F C L M R T Q Z V Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

exchange a[i] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F C L M R Q T Z V Y S

gtlt ilo hi

increment i

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F C L M R Q T Z V Y S

p1 < p1 p1 ≤ and ≤ p2 ? > p2 p2

lo i hilt gt

gtlt ilo hi

stop when pointers cross

Dual-pivot partitioning demo

Finalize.

・Exchange a[lo] with a[--lt].

・Exchange a[hi] with a[++gt].

K E A F C L M R Q T Z V Y S

p1 < p1 p1 ≤ and ≤ p2 > p2 p2

lo hilt gt

gtltlo hi

Dual-pivot partitioning demo

Finalize.

・Exchange a[lo] with a[--lt].

・Exchange a[hi] with a[++gt].

C E A F K L M R Q S Z V Y T

gtltlo hi

3-way partitioned

< p1 p1 p1 ≤ and ≤ p2 p2 > p2

lo hilt gt

