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A collection is a data types that store groups of items.
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Collections

data type key operations data structure

stack PUSH, POP linked list, resizing array

queue ENQUEUE, DEQUEUE linked list, resizing array

priority queue INSERT, DELETE-MAX binary heap

symbol table PUT, GET, DELETE BST, hash table

set ADD, CONTAINS, DELETE BST, hash table

“ Show me your code and conceal your data structures, and I shall 

   continue to be mystified. Show me your data structures, and I won't 

   usually need your code; it'll be obvious.”  — Fred Brooks
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Priority queue

Collections.  Insert and delete items. Which item to delete? 

 
Stack.  Remove the item most recently added.  

Queue.  Remove the item least recently added. 

Randomized queue.  Remove a random item. 

 
Priority queue.  Remove the largest (or smallest) item.

P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue
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Priority queue API

Requirement.  Generic items are Comparable.

 public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue

MaxPQ(Key[] a) create a priority queue with given keys

void insert(Key v) insert a key into the priority queue

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

Key max() return the largest key

int size() number of entries in the priority queue

Key must be Comparable 

(bounded type parameter)
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Priority queue applications

・Event-driven simulation. [ customers in a line, colliding particles ] 

・Numerical computation. [ reducing roundoff error ] 

・Data compression.  [ Huffman codes ] 

・Graph searching.  [ Dijkstra's algorithm, Prim's algorithm ] 

・Number theory.  [ sum of powers ] 

・Artificial intelligence.  [ A* search ] 

・Statistics.   [ online median in data stream ] 

・Operating systems.  [ load balancing, interrupt handling ] 

・Computer networks.  [ web cache ] 

・Discrete optimization. [ bin packing, scheduling ] 

・Spam filtering.  [ Bayesian spam filter ] 

Generalizes:  stack, queue, randomized queue.



Challenge.  Find the largest M items in a stream of N items. 

・Fraud detection:  isolate $$ transactions. 

・NSA monitoring:  flag most suspicious documents. 

 
Constraint.  Not enough memory to store N items.
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Priority queue client example

% more tinyBatch.txt 

Turing      6/17/1990   644.08 

vonNeumann  3/26/2002  4121.85 

Dijkstra    8/22/2007  2678.40 

vonNeumann  1/11/1999  4409.74 

Dijkstra   11/18/1995   837.42 

Hoare       5/10/1993  3229.27 

vonNeumann  2/12/1994  4732.35 

Hoare       8/18/1992  4381.21 

Turing      1/11/2002    66.10 

Thompson    2/27/2000  4747.08 

Turing      2/11/1991  2156.86 

Hoare       8/12/2003  1025.70 

vonNeumann 10/13/1993  2520.97 

Dijkstra    9/10/2000   708.95 

Turing     10/12/1993  3532.36 

% java TopM 5 < tinyBatch.txt 

Thompson    2/27/2000  4747.08 

vonNeumann  2/12/1994  4732.35 

vonNeumann  1/11/1999  4409.74 

Hoare       8/18/1992  4381.21 

vonNeumann  3/26/2002  4121.85

sort key

N huge, M large



Challenge.  Find the largest M items in a stream of N items. 

・Fraud detection:  isolate $$ transactions. 

・NSA monitoring:  flag most suspicious documents. 

Constraint.  Not enough memory to store N items. 
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Priority queue client example

N huge, M large

MinPQ<Transaction> pq = new MinPQ<Transaction>(); 

while (StdIn.hasNextLine()) 

{ 

   String line = StdIn.readLine(); 

   Transaction item = new Transaction(line); 

   pq.insert(item);  

   if (pq.size() > M) 

      pq.delMin(); 

}

pq contains 
largest M items

use a min-oriented pq Transaction data  
type is Comparable 

(ordered by $$)



Challenge.  Find the largest M items in a stream of N items. 
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Priority queue client example

implementation time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

order of growth of finding the largest M in a stream of N items
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Priority queue:  unordered and ordered array implementation

P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue
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Priority queue:  unordered array implementation

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> 

{ 

   private Key[] pq;   // pq[i] = ith element on pq 

   private int N;      // number of elements on pq 

   public UnorderedArrayMaxPQ(int capacity) 

   {  pq = (Key[]) new Comparable[capacity];  } 

   public boolean isEmpty() 

   {  return N == 0; } 

   public void insert(Key x)  

   {  pq[N++] = x;  } 

   public Key delMax() 

   { 

      int max = 0; 

      for (int i = 1; i < N; i++) 

         if (less(max, i)) max = i; 

      exch(max, N-1); 

      return pq[--N]; 

   } 

}

no generic 
array creation

less() and exch() 
similar to sorting methods 

(but don't pass pq[])

should null out entry 

to prevent loitering
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Priority queue elementary implementations

Challenge.  Implement all operations efficiently.

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

order of growth of running time for priority queue with N items
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Binary tree.  Empty or node with links to left and right binary trees. 

Complete tree.  Perfectly balanced, except for bottom level. 

Property.  Height of complete tree with N nodes is ⎣lg N⎦. 
Pf.  Height increases only when N is a power of 2.

 14

Complete binary tree

complete tree with N = 16 nodes (height = 4)
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A complete binary tree in nature
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Binary heap representations

Binary heap.  Array representation of a heap-ordered complete binary tree. 

 
Heap-ordered binary tree. 

・Keys in nodes. 

・Parent's key no smaller than 
children's keys. 

 
Array representation. 

・Indices start at 1. 

・Take nodes in level order. 

・No explicit links needed!

  i   0  1  2  3  4  5  6  7  8  9 10 11
a[i]  -  T  S  R  P  N  O  A  E  I  H  G

 E  I  H  G

P  N  O  A

S  R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

  i   0  1  2  3  4  5  6  7  8  9 10 11
a[i]  -  T  S  R  P  N  O  A  E  I  H  G

 E  I  H  G

P  N  O  A

S  R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations
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Binary heap properties

Proposition.  Largest key is a[1], which is root of binary tree. 

 
Proposition.  Can use array indices to move through tree. 

・Parent of node at k is at k/2. 

・Children of node at k are at 2k and 2k+1.

  i   0  1  2  3  4  5  6  7  8  9 10 11
a[i]  -  T  S  R  P  N  O  A  E  I  H  G

 E  I  H  G

P  N  O  A

S  R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations



Insert.  Add node at end, then swim it up. 

Remove the maximum.  Exchange root with node at end, then sink it down.
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Binary heap demo

T P R N H O A E I G

R

H O AN

E I G

P

T

heap ordered



Insert.  Add node at end, then swim it up. 

Remove the maximum.  Exchange root with node at end, then sink it down.
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Binary heap demo

S R O N P G A E I H

R O

AP

E I

G

H

heap ordered

S

N



5

E

N

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

N

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up reheapify (swim)

Scenario.  Child's key becomes larger key than its parent's key. 

 
To eliminate the violation: 

・Exchange key in child with key in parent. 

・Repeat until heap order restored. 

 
 
 
 
 
 
 
 
 
 
Peter principle.  Node promoted to level of incompetence.
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Promotion in a heap

private void swim(int k) 

{ 

   while (k > 1 && less(k/2, k)) 

   { 

      exch(k, k/2); 

      k = k/2; 

   } 

}

parent of node at k is at k/2



Insert.  Add node at end, then swim it up. 

Cost.  At most 1 + lg N compares.

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum
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Insertion in a heap

public void insert(Key x) 

{ 

   pq[++N] = x; 

   swim(N); 

}



Scenario.  Parent's key becomes smaller than one (or both) of its children's. 

 
To eliminate the violation: 

・Exchange key in parent with key in larger child. 

・Repeat until heap order restored. 

 
 
 
 
 
 
 
 
 
 
Power struggle.  Better subordinate promoted.
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Demotion in a heap

private void sink(int k) 

{ 

   while (2*k <= N) 

   { 

      int j = 2*k; 

      if (j < N && less(j, j+1)) j++; 

      if (!less(k, j)) break; 

      exch(k, j); 

      k = j; 

   } 

}

children of node at k 

are 2k and 2k+1 5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

why not smaller child?



Delete max.  Exchange root with node at end, then sink it down. 

Cost.  At most 2 lg N compares.
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Delete the maximum in a heap

public Key delMax() 

{ 

   Key max = pq[1]; 

   exch(1, N--); 

   sink(1); 

   pq[N+1] = null; 

   return max; 

} 

prevent loitering

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum
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Binary heap:  Java implementation 

public class MaxPQ<Key extends Comparable<Key>> 

{ 

   private Key[] pq; 

   private int N; 

   public MaxPQ(int capacity) 

   {  pq = (Key[]) new Comparable[capacity+1];  } 

   public boolean isEmpty() 

   {   return N == 0;   } 

   public void insert(Key key) 

   public Key delMax() 

   {   /* see previous code */  } 

   private void swim(int k) 

   private void sink(int k) 

   {   /* see previous code */  } 

   private boolean less(int i, int j) 

   {   return pq[i].compareTo(pq[j]) < 0;  } 

   private void exch(int i, int j) 

   {   Key t = pq[i]; pq[i] = pq[j]; pq[j] = t;  } 

}

array helper functions

heap helper functions

PQ ops

fixed capacity 

(for simplicity)
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Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

order-of-growth of running time for priority queue with N items
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Binary heap: practical improvements

Half-exchanges in sink and swim. 

・Reduces number of array accesses. 

・Worth doing.

Z

T

L

B

1 \
X
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Binary heap: practical improvements

Floyd's sink-to-bottom trick. 

・Sink key at root all the way to bottom. 

・Swim key back up. 

・Fewer compares; more exchanges. 

・Worthwhile depending on cost of compare and exchange.

X

F

Y

N O

KL

1
E

\
D

R. W. Floyd
1978 Turing award

1 compare per node

some extra compares and exchanges
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Binary heap: practical improvements

Multiway heaps. 

・Complete d-way tree. 

・Parent's key no smaller than its children's keys. 

・Swim takes logd N compares; sink takes d logd N compares. 

・Sweet spot:  d = 4.

3-way heap

Y

Z

T

KI

G

A DBJ

E FH

X

R VS

P

C ML

W

Q ON
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Binary heap: practical improvements

Caching.  Binary heap is not cache friendly.



 30

Binary heap: practical improvements

Caching.  Binary heap is not cache friendly. 

・Cache-aligned d-heap. 

・Funnel heap. 

・B-heap. 

・…

from the bottom up and only look at one element per heap level. Therefore the shorter tree that results from a larger
fanout will cause the add operation to execute fewer instructions. The instruction count of the remove-min operation,
on the other hand, can be increased by this change. In the limit, as grows large, the heap turns into an unsorted array
that requires a linear number of comparisons. Recall that the remove-min operation moves the last element of the array
to the root and then for each level finds the minimum of the children and swaps this smallest element with its parent.
Since the children are stored in an unsorted manner, comparisons must be performed to find the minimum child and
compare it to the parent. The cost of a swap can vary depending on how much data is stored with each element. We
give the swap a cost of relative to the cost of a comparison. Thus, the total cost at each level is . We calculate
the total cost as multiplied by the number of levels traversed. In our analysis, we assume that the tail element is
always percolated back down to the lowest level in the heap. The total expected cost for remove-min counting swaps
and comparisons is

We can see that for large , the remove-min cost is proportional to by a factor of . This
expression shows that increasing will increase the time spent searching for theminimum child ( ). Increasing
also reduces the total cost of the swaps ( ). Figure 6 shows a graph of for various values of .

For remove-min operations with a swap cost of at least one comparison, we see that increasing fanout actually reduces
the total cost initially. For a swap cost of two comparisons, the remove-min cost is reduced by a quarter by changing
the fanout from two to four and does not grow to its initial level until the fanout is larger than twelve. Thus we expect
that as long as fanouts are kept small, instruction counts should be the same or better than for heaps with fanout two.

This graph also helps to point out the dangers of an analysis that only counts one type of operation. This graph
clearly shows that even if we do not consider caching, a heap with fanout four should perform better than a heap with
fanout two. This would not be evident however, if we were only to consider the number of comparisons performed, as
is commonly done. The curve on the graph which has swap cost of zero is the equivalent of only counting comparisons.
This curve does not show amortization of swap costs and suggests themisleading conclusion that larger fanouts are not
beneficial .

4.2 Collective Analysis of Cache-Aligned -heaps
We first perform collective analysis on -heaps whose sets of siblings are cache aligned. A -heap with elements
has depth . and . Let be the
size in bytes of each heap element.

In this analysis, we restrict fanout to be a positivepower of 2 and element size to be a power of 2. We also restrict
our heap configurations to those in which all of a parent’s children fit in a single cache block (where ). This
limits the values of that we are looking at; for a typical cache block size of 32 bytes, fanout is limited to 4 for 8 byte
heap elements, and fanout is limited to 8 for 4 byte heap elements. We also restrict our analysis to heap configurations
in which the bottom layer of the heap is completely full (where = ).

Heaps are often used in discrete event simulations as a priority queue to store the events. In order to measure the
performance of heaps operating as an event queue, we analyze our heaps in the hold model [25]. In the hold model,

It has been noticed previously that increasing a heap’s fanout can reduce the instruction count of its operations [27, Ex. 28 Pg.
158][12, Ex. 7-2 Pg. 152].

0 1 2 3 4
block 0 block 1

5 6 7 8
block 2

Siblings

block 3
9 10 11 12

0

1 2 3 4

5 6 7 8 9 10 11 12

Figure 5: The layout of a -heap when four elements fit per cache line and the array is padded to cache-align the heap.

10



 31

Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

d-ary heap logd N d logd N 1

Fibonacci 1 log N † 1

Brodal queue 1 log N 1

impossible 1 1 1

order-of-growth of running time for priority queue with N items

† amortized

why impossible?
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Binary heap considerations

Underflow and overflow. 

・Underflow: throw exception if deleting from empty PQ. 

・Overflow: add no-arg constructor and use resizing array. 

 
Minimum-oriented priority queue. 

・Replace less() with greater(). 

・Implement greater(). 

 
Other operations. 

・Remove an arbitrary item. 

・Change the priority of an item. 

 
Immutability of keys.  

・Assumption:  client does not change keys while they're on the PQ. 

・Best practice:  use immutable keys.

can implement efficiently with sink() and swim() 
[ stay tuned for Prim/Dijkstra ]

leads to log N 

amortized time per op 

(how to make worst case?)
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Immutability:  implementing in Java

Data type.  Set of values and operations on those values. 

Immutable data type.  Can't change the data type value once created. 

Immutable.  String, Integer, Double, Color, Vector, Transaction, Point2D. 

Mutable.  StringBuilder, Stack, Counter, Java array.

public final class Vector {  

   private final int N; 

   private final double[] data; 

   public Vector(double[] data) { 

      this.N = data.length; 

      this.data = new double[N]; 

      for (int i = 0; i < N; i++) 

         this.data[i] = data[i]; 

   } 

   … 

}

defensive copy of mutable 

instance variables

instance variables private and final

instance methods don't change 

instance variables

can't override instance methods
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Immutability:  properties

Data type.  Set of values and operations on those values. 

Immutable data type.  Can't change the data type value once created. 

Advantages. 

・Simplifies debugging. 

・Safer in presence of hostile code. 

・Simplifies concurrent programming. 

・Safe to use as key in priority queue or symbol table. 

Disadvantage.  Must create new object for each data type value.

“ Classes should be immutable unless there's a very good reason 

    to make them mutable.…  If a class cannot be made immutable, 

    you should still limit its mutability as much as possible. ” 

            — Joshua Bloch (Java architect)
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Sorting with a binary heap

Q.  What is this sorting algorithm? 

 
 
 
 
 
 
 
 
 
 
Q.  What are its properties? 

A.  N log N, extra array of length N, not stable. 

 
Heapsort intuition.  A heap is an array; do sort in place.

public void sort(String[] a) 

{ 

    int N = a.length; 

    MaxPQ<String> pq = new MaxPQ<String>(); 

    for (int i = 0; i < N; i++) 

        pq.insert(a[i]); 

    for (int i = N-1; i >= 0; i--) 

        a[i] = pq.delMax(); 

}
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Heapsort

Basic plan for in-place sort. 

・View input array as a complete binary tree. 

・Heap construction:  build a max-heap with all N keys. 

・Sortdown:  repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

keys in arbitrary order

1 2 3 4 5 6 7 8 9 10 11

S O R T E X A M P L E

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

build max heap
(in place)

1 2 3 4 5 6 7 8 9 10 11

X T S P L R A M O E E

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sorted result
(in place)

1 2 3 4 5 6 7 8 9 10 11

A E E L M O P R S T X



Heap construction.  Build max heap using bottom-up method.
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Heapsort demo

S O R T E X A M P L E

1 2 3 4 5 6 7 8 9 10 11

5

10 11

R

E X AT

M P L E

O

S

8 9

4 76

32

1

we assume array entries are indexed 1 to N

array in arbitrary order



Sortdown.  Repeatedly delete the largest remaining item.
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Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

1 2 3 4 5 6 7 8 9 10 11

array in sorted order
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Heapsort:  heap construction

First pass.  Build heap using bottom-up method. 

for (int k = N/2; k >= 1; k--) 

   sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)
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Heapsort:  sortdown

Second pass. 

・Remove the maximum, one at a time. 

・Leave in array, instead of nulling out.

while (N > 1) 

{ 

   exch(a, 1, N--); 

   sink(a, 1, N); 

}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)
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Heapsort:  Java implementation

public class Heap 

{ 

   public static void sort(Comparable[] a) 

   { 

      int N = a.length; 

      for (int k = N/2; k >= 1; k--) 

         sink(a, k, N); 

      while (N > 1) 

      { 

         exch(a, 1, N); 

         sink(a, 1, --N); 

      } 

   } 

   private static void sink(Comparable[] a, int k, int N) 

   {  /* as before */  } 

   private static boolean less(Comparable[] a, int i, int j) 

   {  /* as before */  } 

   private static void exch(Object[] a, int i, int j) 

   {  /* as before */  } 

but convert from 1-based  
indexing to 0-base indexing

but make static (and pass arguments)
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Heapsort:  trace

                       a[i]
  N   k   0  1  2  3  4  5  6  7  8  9 10 11
             S  O  R  T  E  X  A  M  P  L  E
 11   5      S  O  R  T  L  X  A  M  P  E  E  
 11   4      S  O  R  T  L  X  A  M  P  E  E 
 11   3      S  O  X  T  L  R  A  M  P  E  E  
 11   2      S  T  X  P  L  R  A  M  O  E  E  
 11   1      X  T  S  P  L  R  A  M  O  E  E
             X  T  S  P  L  R  A  M  O  E  E
 10   1      T  P  S  O  L  R  A  M  E  E  X
  9   1      S  P  R  O  L  E  A  M  E  T  X  
  8   1      R  P  E  O  L  E  A  M S  T  X  
  7   1      P  O  E  M  L  E  A  R  S  T  X 
  6   1      O  M  E  A  L  E  P  R  S  T  X  
  5   1      M  L  E  A  E  O  P  R  S  T  X  
  4   1      L  E  E  A  M  O  P  R  S  T  X 
  3   1      E  A  E  L  M  O  P  R  S  T  X  
  2   1      E  A  E  L  M  O  P  R  S  T  X  
  1   1      A  E  E  L  M  O  P  R  S  T  X
             A  E  E  L  M  O  P  R  S  T  X 

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)



Proposition.  Heap construction uses ≤ 2 N compares and ≤ N exchanges. 

 
Pf sketch.  [assume N  =  2h+1 – 1]
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Heapsort:  mathematical analysis

h + 2(h � 1) + 4(h � 2) + 8(h � 3) + . . . + 2h(0) � 2h+1

= N

h + 2(h � 1) + 4(h � 2) + 8(h � 3) + . . . + 2h(0) � 2h+1

= N

a tricky sum 

(see COS 340)

binary heap of height h = 3

0

1

2

0 00

2

1

3

00

1

00

1

max number of exchanges 

to sink node

3

2 2

1 1 1 1

0 0 0 0 0 0 0 0



Proposition.  Heap construction uses ≤ 2 N compares and ≤ N exchanges. 

Proposition.  Heapsort uses ≤ 2 N lg N compares and exchanges. 

 
 
Significance.  In-place sorting algorithm with N log N worst-case. 

・Mergesort:  no, linear extra space. 

・Quicksort:  no, quadratic time in worst case. 

・Heapsort:  yes! 

 
 
Bottom line.  Heapsort is optimal for both time and space, but: 

・Inner loop longer than quicksort’s. 

・Makes poor use of cache. 

・Not stable.

 45

Heapsort:  mathematical analysis

N log N worst-case quicksort possible, 

not practical

in-place merge possible, not practical

algorithm can be improved to ~ 1 N lg N

advanced tricks for improving



Goal.  As fast as quicksort in practice; N log N worst case, in place. 

 
Introsort. 

・Run quicksort. 

・Cutoff to heapsort if stack depth exceeds 2 lg N. 

・Cutoff to insertion sort for N = 16. 

 
 
 
 
 
 
 
 
 
In the wild.  C++ STL, Microsoft .NET Framework.
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Introsort
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Sorting algorithms: summary

inplace? stable? best average worst remarks

selection ✔ ½ N 2 ½ N 2 ½ N 2 N exchanges

insertion ✔ ✔ N ¼ N 2 ½ N 2
use for small N 

or partially ordered

shell ✔ N log3 N ? c N 3/2
tight code; 

subquadratic

merge ✔ ½ N lg N N lg N N lg N
N log N guarantee; 

stable

timsort ✔ N N lg N N lg N
improves mergesort 

when preexisting order

quick ✔ N lg N 2 N ln N ½ N 2
N log N probabilistic guarantee;  

fastest in practice

3-way quick ✔ N 2 N ln N ½ N 2
improves quicksort  
when duplicate keys

heap ✔ N 2 N lg N 2 N lg N N log N guarantee;  
in-place

? ✔ ✔ N N lg N N lg N holy sorting grail


