A I g O r|th m S ROBERT SEDGEWICK | KEVIN WAYNE

4.4 SHORTEST PATHS

> APlIs
shortest-paths properties

v

v

Dijkstra’s algorithm
edge-weighted DAGSs
negative weights

Algorithms

\4

v

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to +.

edge-weighted digraph

4->5 0.35

5->4 0.35 (D—

4->7 0.37 \Q)/

5-57 0.28 «(:)

7->5 0.28 /@I

5-51 0.32

0->4 0.38 =

0->2 0.26

i->§ 823 shortest path from 0 to 6
_> .

2->7 0.34 SCTY

6->2 0.40 2.53 0.39
3->6 0.52 3-56 052

6->0 0.58 '

6->4 0.93

Google maps

= a 2 n Vo
) 0 [Map || Satellite |[Hybrid |
Q- enty L 2 % s
% 2, Q=
© db B <
g 2 5
¢ A Medical Center - 7 5,
% . wain RS ° ¥ oo @ Se %,
2 8 At Pnnceton ;_;'_:_‘_""' =z Y\Ré z G Banbnd fo)
- % Bl A et B\ guan” % 2
453 > o B S s %
NE e & > W 2
) I A @\ e AR
o ? <) \"‘.\nﬂ'ﬂ' o,
& - = 2l 2 ’9'
:'3' 1% ‘E:,.
'ﬁ‘»r (= O L
o o i oS Pringéton) ® \
A0 m a2 z o2 4. % S
b R Cemetery T W BN PR
\ % @ %OO%\ B\ 8\ &
L& 7 i % AP 2, Yo
Quary o = o ‘o ~
MRS < \ a gt & s
GO I 2 z
e '50,‘ Grees g % ¢ 2 e
o \ $opart A o
weland Ln G L RoPSson e ® = 2 l); -
O > e 3 2 e
) e <% %, P
Sy . o S ot d 5\
Gt a aen 2,
o -4 A o v
= \ < “ . 3
z .3 5 Mﬂ") \E\‘-.i‘\
p €2 . _ & .
2 @ 2 . o '.?‘ - ’-\
> % AL 0 e Pﬂﬂce‘()n S) g \\‘-\‘\0 o
:.f, IR Clb‘ \N"“' (3 AP
,\c-;‘ n ‘u,u'Bp o N {e""\
.,._‘,\\'" W Q\'ﬁi\j\“ c J‘,;‘."" +
; 4 5 2
< e BN R g
A 7 & < B 5N N
® | % % O AN
o > %, % ARE AL
% WY n A§ %
7 % B &
2 z
> .(.r
3 : 5
,Z§.‘2‘
< ~
) Palmer Sladium-Princeten
2 University Fa Dy
%
(=3 .
] & Princeton
S) . ; ;
s University-Main Campus
8
4 @
(§ / (0‘_ ;_,\.\\“
3 N %
%
>
&
{vll
| 1000 ft | Q;E«'
200 m

Soringdale
Gnlf Club

@2005 Google - Map data ®2005 NAVTEQ™ -1

Shortest path applications

 PERT/CPM.

* Map routing.
 Seam carving.

* Texture mapping.
* Robot navigation.

 Typesetting in TeX.

* Urban traffic planning.

» Optimal pipelining of VLSI chip.

» Telemarketer operator scheduling.

* Routing of telecommunications messages.
* Network routing protocols (OSPF, BGP, RIP).
* Exploiting arbitrage opportunities in currency exchange.

* Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?
Single source: from one vertex s to every other vertex.
Single sink: from every vertex to one vertex r.
Source-sink: from one vertex s to another v.
» All pairs: between all pairs of vertices.

Restrictions on edge weights?
* Nonnegative weights.
* Euclidean weights.
» Arbitrary weights.

A \ \ ‘(I

g iV
185 West San Carlos Street (CA-82) ! !u

Cycles?

* No directed cycles.
» No "negative cycles." which variant?

Simplifying assumption. Shortest paths from s to each vertex v exist.

4.4 SHORTEST PATHS

» APIs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v—w

int from(Q) vertex v

int to() vertex w
double weight() weight of this edge
String toString() string representation

weight

® "0

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{

private final int v, w;
private final double weight;

public DirectedEdge(int v, 1int w, double weight)

{

this.v = v;

this.w = w;

this.weight = weight;
}

.. i from() and to() replace

public int from() > either() and other()
{ return v; } —

public int to()
{ return w; }

public int weight()
{ return weight; }

Edge-weighted digraph API

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

void addEdge(DirectedEdge e) add weighted directed edge e
Iterable<DirectedEdge> adj(int v) edges pointing from v
int VO number of vertices

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt

\/\ﬁ;8

N

O WO NRE NOOUTIN VT Ul
A OO N NWWNPAMRERUINN DU
ecNeoNoNolNoNolNolNolNoNololNoloNolNe

B
15 <

.35
.35
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

N OO ol W N R O

TN

adj

.26 .38

.29

.34 Bag objects

.52 reference to a
DirectedEdge

object

.37 .35 i

.32 .28 5(41(.35

.93 58— 6|2(.40

.39 .28

10

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

public class EdgeWeightedDigraph

{

private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph(int V)
{
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>();

public void addEdge(DirectedEdge e)
{

int v = e.from(); «—

adj[v].add(e);

public Iterable<DirectedEdge> adj(int v)
{ return adj[v]; }

add edge e = v—=w to

only v's adjacency list

11

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G
double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

SP sp = new SP(G, s);
for (int v =0; v < G.VO; v++)

{
StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v))
StdOut.print(e + " ");

StdOut.printin();

12

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

% java SP tinyEWD.txt O

0 to 0 (0.00):

0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32

0 to 2 (0.26): 0->2 0.26

0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39

0 to 4 (0.38): 0->4 0.38

0 to 5 (0.73): 0->4 0.38 4->5 0.35

0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52

0 to 7 (0.60): 0->2 0.26 2->7 0.34

4.4 SHORTEST PATHS

> shortest-paths properties

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest-paths tree (SPT) solution exists. Why?
Consequence. Can represent the SPT with two vertex-indexed arrays:

e distTo[v] is length of shortest path from s to v.
e edgeTo[v] is last edge on shortest path from s to v.

edgeTol[] distTol[]

o 0 null 0
o e 1 5->1 1.05
2 0->2 0.26
e e 3 7-53 0.97
@ 4| 0->4 0.38
5 4->5 0.73
e e 6 3->6 1.49
7 2->7 0.60

shortest-paths tree from 0 parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

e distTo[v] is length of shortest path from s to v.
e edgeTo[v] is last edge on shortest path from s to v.

public double distTo(int v)
{ return distTo[v]; }

public Iterable<DirectedEdge> pathTo(int v)

{
Stack<DirectedEdge> path = new Stack<DirectedEdge>();

for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);

return path;

16

Edge relaxation

Relax edge e =v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.

* edgeTo[w] is last edge on shortest known path from s to w.

e If e=v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

v—w successfully relaxes

R

1. 3

72 4.4

black edges
are in edgeTo[]

17

Edge relaxation

Relax edge e =v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.
* If e=v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

private void relax(DirectedEdge e)

{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();

edgeTo[w]

€;

18

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:
* distTo[s] =0.
* For each vertex v, distTo[v] is the length of some path from s to v.
 For each edge e=v—w, distTo[w] < distTo[v] + e.weight().

Pf. < [necessary]

* Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.
 Then, e gives a path from s to w (through v) of length less than distTo[w].

C Q/y@ .1 €<—— distTo[v]

w 72 distTo[w]

19

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

Pf.

distTo[s] = 0.
For each vertex v, distTo[v] is the length of some path from s to v.
For each edge e =v—w, distTo[w] < distTo[v] + e.weight().

= [sufficient]

Suppose that s=vo—vi—=wv— ...— v =w is a shortest path from s to w.

Then, distTo[vi] < distTo[vo]l + ei.weight()

. . . ei = ith edge on shortest
distTo[v2] < distTo[vi] + ez.weight()

path from s tow

distTo[vk] < distTo[vk-1] + ex.weight()
Add inequalities; simplify; and substitute distTo[vo] = distTo[s] = O:

distTo[w] = distTo[vk] < ei.weight() + ez.weight() + .. + ek.weight()

weight of shortest path from s tow

Thus, distTo[w] is the weight of shortest path to w. =

weight of some path from s to w 20

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.
 The entry distTo[v] is always the length of a simple path from s to v.
* Each successful relaxation decreases distTo[v] for some v.
 The entry distTo[v] can decrease at most a finite number of times. =

21

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

22

4.4 SHORTEST PATHS

> Dijkstra's algorithm

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quotes

“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,

they are without precedent in the cultural history of mankind. ”

“The use of COBOL cripples the mind; its teaching should,

therefore, be regarded as a criminal offence. ”

“It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of

regeneration. ”

“APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques

of the past: it creates a new generation of coding bums. ”

| A

Edsger W. Dijkstra

Turing award 1972

[\
’
Ve LR e
! 3 Q‘
%

24

Edsger W. Dijkstra: select quotes

N

‘Object-orienteg
is an exceptio Programming

n c.litOI,'nh "
== Bdsger Dijkstra

25

Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

« Add vertex to tree and relax all edges pointing from that vertex.

15

<

an edge-weighted digraph

20

/

12\ 3
7 >

>

/

0—1
0—4
0—7
12
1—3
1-—-7
2—3
2—6

O O O O O O O O O oo o o oo o o

O

26

Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

)

Q

shortest-paths tree from vertex s

(2)

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

27

Dijkstra's algorithm visualization

28

Dijkstra's algorithm visualization

29

Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted
digraph with nonnegative weights.

Pf.
 Each edge e =v—w is relaxed exactly once (when vertex v is relaxed),

leaving distTo[w] < distTo[v] + e.weight().
* Inequality holds until algorithm terminates because:
- distTo[w] cannot increase <«—— distTo[] values are monotone decreasing

- distTo[v] will not change <«<—— we choose lowest distTo[] value at each step
(and edge weights are nonnegative)

 Thus, upon termination, shortest-paths optimality conditions hold.

30

Dijkstra's algorithm: Java implementation

public class DijkstraSP

{

private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP(EdgeWeightedDigraph G, int s)
{

edgeTo = new DirectedEdge[G.V()];

distTo = new double[G.V(];

pgq = new IndexMinPQ<Double>(G.V());

for (int v =0; v < G.VO; v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;

pg.insert(s, 0.0);

relax vertices in order
while (!pq.isEmpty())

A

of distance from s

{
int v = pg.delMin();
for (DirectedEdge e : G.adj(v))
relax(e);
}

Dijkstra's algorithm: Java implementation

private void relax(DirectedEdge e)

{

int v = e.from(Q), w = e.to();

if (distTo[w] > distTo[v] + e.weight())

} e
(w, distTo[w]);

{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (pg.contains(w)) pq.decreaseKey(w, distTo[w])
else pg.insert
}

update PQ

32

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V delete-min, E decrease-key.

unordered array

binary heap log V log V log V ElogV
d-way heap loga V dlogsV loga V E loggv V
Fibonacci heap T log V' T E+ViogV
+ amortized

Bottom line.
* Array implementation optimal for dense graphs.
e Binary heap much faster for sparse graphs.

* 4-way heap worth the trouble in performance-critical situations.
* Fibonacci heap best in theory, but not worth implementing.

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?
* Prim's algorithm is essentially the same algorithm.

e Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
 Prim: Closest vertex to the tree (via an undirected edge).
* Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

34

4.4 SHORTEST PATHS

Algorithms
» edge-weighted DAGs

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.
Is it easier to find shortest paths than in a general digraph?

J

A. Yes!

36

Acyclic shortest paths demo

* Consider vertices in topological order.
* Relax all edges pointing from that vertex.

J

©O O O O O O O O O O o o o o o o

an edge-weighted DAG

37

Acyclic shortest paths demo

* Consider vertices in topological order.

* Relax all edges pointing from that vertex.

()

()

shortest-paths tree from vertex s

(3)

01 4 7 5 2 3 6

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

38

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-
weighted DAG in time proportional to E + V. \

edge weights
can be negative!

Pf.
« Each edge e =v—w is relaxed exactly once (when vertex v is relaxed),

leaving distTo[w] < distTo[v] + e.weight().
* Inequality holds until algorithm terminates because:
- distTo[w] cannot increase <«—— distTo[] values are monotone decreasing

- distTo[v] will not Change <€«— because of topological order, no edge pointing to v

will be relaxed after v is relaxed

 Thus, upon termination, shortest-paths optimality conditions hold. =

39

Shortest paths in edge-weighted DAGs

public class AcyclicSP
{

private DirectedEdge[] edgeTo;

private double[] distTo;

public AcyclicSP(EdgeWeightedDigraph G, int s)

{

edgeTo = new DirectedEdge[G.V()];
distTo = new double[G.V()];

for (int v = 0; v < G.VO; v++)
distTo[v] = Double.POSITIVE_INFINITY;

distTo[s] = 0.0;

Topological topological

= new Topological(G);

for (int v : topological.order())

for (DirectedEdge e
relax(e);

: G.adj(v))

<

topological order

40

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for

display on cell phones and web browsers.

REE

‘Tmage Resizing

Shai Avidan
Mitsubishi Electric Research Lab

Ariel Shamir
The interdisciplinary Center & MERL

http:/ /www.youtube.com/watch?v=vIFCV2spKtg

41

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for
display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

42

Content-aware resizing

To find vertical seam:
* Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
» Weight of pixel = energy function of 8 neighboring pixels.
 Seam = shortest path (sum of vertex weights) from top to bottom.

43

Content-aware resizing

To find vertical seam:
* Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
* Weight of pixel = energy function of 8 neighboring pixels.
 Seam = shortest path (sum of vertex weights) from top to bottom.

seam

Content-aware resizing

To remove vertical seam:
* Delete pixels on seam (one in each row).

45

Content-aware resizing

To remove vertical seam:
* Delete pixels on seam (one in each row).

46

Shortest path variants

Q1. How to model both vertex and edge weights?
~ X ; -~ ~ c el
@ @ @i~
el el
b e b e
s ~ - ~

Q2. How to model multiple sources and sinks?

47

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

* Negate all weights.
* Find shortest paths.

A

* Negate weights in result.

longest paths input

.35
.37
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

o

OO OO OO OOO0OO OO

shortest paths input

.35
.37
.28
-0.
.38
.26
.39
.29
.34
.40
.52
.58
.93

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

32

equivalent: reverse sense of equality in relax()

Key point. Topological sort algorithm works even with negative weights.

48

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence
constraints, schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the constraints.

job duration musz Z})o”fflete

0 41.0 1 7 9

1 51.0 2

2 50.0

3 36.0

4 38.0

5 45.0 1

6 21.0 3 8 , 3

7 32.0 3 8 0 5 ¢ - :
8 32.0 2 5 -

9 29.0 4 6 | | | | | l

Parallel job scheduling solution

49

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:
* Source and sink vertices.

must complete
before

job duration

* Two vertices (begin and end) for each job.

0 41.0 1 7 9
* Three edges for each job. 1 510 2
2 50.0
- begin to end (weighted by duration) 3 36.0
4 38.0
- source to begin (0 weight) 5 45.0
- end to sink (0 weight) ? §§8 z :
» One edge for each precedence constraint (0 weight). . 3.0 .
job s{ilrt jo)b/ finish o prec?dence cqngt)mint
") > / zero weight
@T» \ & \® 50 >
duration @L; ;@ 32 > —
: 21)< 36
O 29 e " @ "
O O

\C 38
: 45

Critical path method

CPM. Use longest path from the source to schedule each job.

Parallel job scheduling solution

51
41 > (1 ————

y 32 32 /@_L’
duration \@—> / \

critical path
/C 21 / C 36
o=

45

51

4.4 SHORTEST PATHS

Algorithms

> negative weights

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.
2 4 -8
Re-weighting. Add a constant to every edge weight doesn’t work.

14 (1)
Adding 8 to each edge weight changes the

10 192 0 shortest path from 0—1—-2—3 to 0—3.

Dijkstra selects vertex 3 immediately after 0.
But shortest path from 0 to 3 is 0—1—2—3.

11)

Conclusion. Need a different algorithm.

53

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is

negative.
digraph
4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29 negative cycle (-0.66 + 0.37 + 0.28)
2->7 0.34 5->4->7->5
6->2 0.40
3->6 0.52
6->0 0.58 shortest path from0to 6
6->4 0.93 0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

AN

assuming all vertices reachable from s

54

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

for (int i =0; i < G.VQ; i++)
for (int v =0; v < G.VO; v++)
for (DirectedEdge e : G.adj(v)) |¥ passi(relaxeachedge

relax(e);

55

Bellman-Ford algorithm demo

Repeat V times: relax all £ edges.

<

an edge-weighted digraph

©O O O O O O O O O O o o o o o o

56

Bellman-Ford algorithm demo

Repeat V times: relax all £ edges.

()

()

shortest-paths tree from vertex s

v distTo[] edgeTol[]
0 0.0 =

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

57

Bellman-Ford algorithm: visualization

passes

13 SPT

10

58

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-
weighted digraph with no negative cycles in time proportional to E x V.

Pf idea. After pass i, found shortest path to each vertex v for which the
shortest path from s to v contains i edges (or fewer).

59

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i,
no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

I

be careful to keep at most one copy

of each vertex on queue (why?)

Overall effect.
 The running time is still proportional to E x V in worst case.
 But much faster than that in practice.

60

Single source shortest-paths implementation: cost summary

algorithm restriction typical case worst case extra space

no directed
topological sort
cycles
Dijkstra no negative Eloe V o 1 §
0
(binary heap) weights 08 g
Bellman-Ford EV EV v
no negative
Bellman-Ford cycles
E+V EV v

(queue-based)

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

61

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle() is there a negative cycle?

Iterable <DirectedEdge> negativeCycle()

digraph
4->5
5->4
4->7
5->7
7->5
5->1
0->4
0->2
7->3
1->3
2->7
6->2
3->6
6->0
6->4

OO OO OO OOOOOO0OOoO oo

.35
.66
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

negative cycle reachable from s

negative cycle (-0.66 + 0.37 + 0.28)
5->4->7->5

62

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop,
updating distTo[] and edgeTo[] entries of vertices in the cycle.

edgeTo[v]

Proposition. If any vertex v is updated in pass V, there exists a negative
cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

63

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

1,35

1,521

0,943

0,995

0,741

1,126

0,698

0,732

0,657

0,888

1

0,62

0,65

1,061

1,433

1,614

1,049

1,011

1,366

1,538

0,953

Ex. $1,000 = 741 Euros = 1,012.206 Canadian dollars = $1,007.14497.

T

1000 x 0.741 x 1.366 x 0.995 = 1007.14497

64

Negative cycle application: arbitrage detection

Currency exchange graph.
 Vertex = currency.
 Edge = transaction, with weight equal to exchange rate.
* Find a directed cycle whose product of edge weights is > 1.

0.741 * 1.366 * .995 = 1.00714497

B,

Challenge. Express as a negative cycle detection problem.

65

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.
e Let weight of edge v—w be -In (exchange rate from currency v to w).
e Multiplication turns to addition; > 1 turns to <0.
* Find a directed cycle whose sum of edge weights is <0 (negative cycle).

-Tn(.741) -1n(1.366) -1n(.995)

oy

.2998 - .3119 + .0050 = -.0071 \

weight w
with ln(w\

Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Nonnegative weights.
* Arises in many application.
* Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
* Arise in some applications.
* Topological sort algorithm is linear time.
 Edge weights can be negative.

Negative weights and negative cycles.
* Arise in some applications.
* If no negative cycles, can find shortest paths via Bellman-Ford.
* If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

67

