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Dependency grammars
a refresher

John saw Mary

subject object
root

• No constituents, units of syntactic structure are words

• The structure of the sentence is represented by asymmetric,
binary relations between syntactic units

• Each relation defines one of the words as the head and the
other as dependent

• The arcs (relations) have labels (dependency types)
• Often an artificial root node is used for computational

convenience
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Dependency grammars
common assumptions, variations

• Single-headed: most dependency formalisms require a word
to have a single head

• Acyclic: most dependency formalism do not allow loops in
the graph

• Connected: all nodes are reachable from the ‘root’ node
• Projective: no crossing dependencies

The above assumptions (except projectivity) are common
in dependency parsing.
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Dependency parsing
an overview

• Dependency parsing has many similarities with
context-free parsing (e.g., the result is a tree)

• They also have some different properties (e.g., number of
edges and depth of trees are limited)

• The process involves discovering the relations between
words in a sentence

– Determine the head of each word
– Determine the relation type

• Dependency parsing can be
– grammar-driven (hand crafted rules or constraints)
– data-driven (rules/model is learned from a treebank)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 3 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency parsing
common methods for data-driven parsers

There are two main approaches:
Graph-based search for the best tree structure, for example

• find minimum spanning tree (MST)
• adaptations of CF chart parser (e.g., CKY)

(in general, computationally more expensive)
Transition-based similar to shift-reduce parsing (used for

programming language parsing)
• Single pass over the sentence, determine an

operation (shift or reduce) at each step
• Linear time complexity
• We need an approximate method to

determine the operation
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Shift-Reduce parsing
a refresher through an example

G
ra

m
m

ar

S → P | S+ P | S− P

P → Num | P × Num | P / Num

Pa
rs

er
st

at
es

/a
ct

io
ns

Stack Input buffer Action

2+ 3× 4 shift
2 + 3× 4 reduce (P → Num)
P + 3× 4 reduce (S → P)
S + 3× 4 shift
S+ 3× 4 shift
S+ 3 × 4 reduce (P → Num)
S+ P × 4 shift
S+ P × 4 shift
S+ P × 4 reduce (P → P × Num)
S+ P reduce (S → S+ P)
S accept
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Transition-based parsing
differences from shift-reduce parsing

• The shift-reduce parsers (for programming languages) are
deterministic, actions are determined by a table lookup

• Natural language sentences are ambiguous, hence a
dependency parser’s actions cannot be made deterministic

• Operations are (somewhat) different: instead of reduce
(using phrase-structure rules) we use arc operations
connecting two nodes with a label

• Further operations are often defined (e.g., to deal with
non-projectivity)
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Transition based parsing

• Use a stack and a buffer of unprocessed words
• Parsing as predicting a sequence of transitions like

Left-Arc: mark current word as the head of the word on
top of the stack

Right-Arc: mark current word as a dependent of the
word on top of the stack

Shift: push the current word on to the stack
• Algorithm terminates when all words in the input are

processed
• The transitions are not naturally deterministic, best

transition is predicted using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)
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A typical transition system

(σ |

stack top
wi

stack

,
next word

wj | β

buffer

, A

arcs
)

Left-Arcr: (σ | wi,wj | β,A) ⇒ (σ ,wj | β,A ∪ {(wj, r,wi)})

• pop wi,
• add arc (wj, r,wi) to A (keep wj in the buffer)

Right-Arcr: (σ | wi,wj | β,A) ⇒ (σ ,wi | β,A ∪ {(wi, r,wj)})

• pop wi,
• add arc (wi, r,wj) to A,
• move wi to the buffer

Shift: (σ ,wj | β,A) ⇒ (σ | wj, β,A)

• push wj to the stack
• remove it from the buffer

(Kübler, McDonald, and Nivre 2009, p.23)
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(case)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case
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Making transition decisions

• In classical shift-reduce parsing the actions are
deterministic

• In transition-based dependency parsing, we need to choose
among all possible transitions

• The typical method is to train a (discriminative) classifier
on features extracted from gold-standard transition
sequences

• Almost any machine learning method method is
applicable. Common choices include

– Memory-based learning
– Support vector machines
– (Deep) neural networks
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Features for transition-based parsing

• The features come from the parser configuration, for
example

– The word at the top of the stack, (peeking towards the
bottom of the stack is also fine)

– The first/second word on the buffer
– Right/left dependents of the word on top of the

stack/buffer
• For each possible ‘address’, we can make use of features

like
– Word form, lemma, POS tag, morphological features, word

embeddings
– Dependency relations – (wi, r,wj) triples

• Note that for some ‘address’–‘feature’ combinations may
be missing
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The training data

• We want features like,
– lemma[Stack] = duck
– POS[Stack] = NOUN
– ...

• But treebank gives us:� �
1 Read read VERB VB Mood=Imp|VerbForm=Fin 0 root
2 on on ADV RB _ 1 advmod
3 to to PART TO _ 4 mark
4 learn learn VERB VB VerbForm=Inf 1 xcomp
5 the the DET DT Definite=Def 6 det
6 facts fact NOUN NNS Number=Plur 4 obj
7 . . PUNCT . _ 1 punct� �

• The treebank has the outcome of the parser, but none of
our features.
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The training data

• The features for transition-based parsing have to be from
parser configurations

• The data (treebanks) need to be preprocessed for obtaining
the training data

• Construct a transition sequence by parsing the sentences,
and using treebank annotations (the set A) as an ‘oracle’

• Decide for
Left-Arcr if (β[0], r,σ[0]) ∈ A

Right-Arcr if (σ[0], r,β[0]) ∈ A

and all dependents of β[0] are attached
Shift otherwise

• There may be multiple sequences that yield the same
dependency tree, the above defines a ‘canonical’ transition
sequence
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Non-projective parsing

• The transition-based parsing we defined so far works only
for projective dependencies

• One way to achieve (limited) non-projective parsing is to
add special operations:

– Swap operation that swaps tokens in swap and buffer
– Left-Arc and Right-Arc transitions to/from non-top words

from the stack
• Another method is pseudo-projective parsing:

– preprocessing to ‘projectivize’ the trees before training
• The idea is to attach the dependents to a higher level head

that preserves projectivity, while marking it on the new
dependency label

– post-processing for restoring the projectivity after parsing
• Re-introduce projectivity for the marked dependencies
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Pseudo-projective parsing

Non-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Pseudo-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

VC:TMP

SJ:PP

PUNC

SBJNMOD
NP
NMOD

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 15 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: summary/notes

• Linear time, greedy parsing
• Can be extended to non-projective dependencies
• One can use arbitrary features,
• We need some extra work for generating gold-standard

transition sequences from treebanks
• Early errors propagate, transition-based parsers make

more mistakes on long-distance dependencies
• The greedy algorithm can be extended to beam search for

better accuracy (still linear time complexity)
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Classification
a minimal introduction

• In transition-based parsing, transition decisions come from
a classifier

• At each step during parsing, we have features like
– form[Stack] = saw
– lemma[Stack] = see
– POS[Stack] = VERB

– form[Buff] = her
– lemma[Buff] = she
– POS[Buf] = PRON

• We need to make a transition decision such as
– Shift
– Right-Arc(obj)

– Right-Arc(obl)
– Left-Arc(acl)

• We can use any multi-class classifier, examples in the
literature include

– SVMs
– Decision Trees

– Neural networks
– …
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Supervised learning
with a picture

predictiontraining

training
data features

labels

ML
algorithm

ML
model

features

new data

predicted
label
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A few notes

• In ML, the focus is generalizations outside our training
data

• In this class,
– we will treat classification methods as a black box: no

introduction to any particular method
– we will have a short, hands-on introduction to (linear)

classification
• Statistical NLP course (summer semester) includes a more

detailed introduction to ML methods
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Graph-based parsing: preliminaries

• Enumerate all possible dependency trees
• Pick the best scoring tree
• Features are based on limited parse history (like CFG

parsing)
• Two well-known flavors:

– Maximum (weight) spanning tree (MST)
– Chart-parsing based methods

eisner1996; McDonald, Pereira, Ribarov, and Hajič 2005
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MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a
sub-graph which is a tree and traverses
all the nodes

• For fully-connected graphs, the number
of spanning trees are exponential in the
size of the graph

• The problem is well studied
• There are efficient algorithms for

enumerating and finding the optimum
spanning tree on weighted graphs
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MST algorithm for dependency parsing

• For directed graphs, there is a polynomial time algorithm
that finds the minimum/maximum spanning tree (MST) of
a fully connected graph (Chu-Liu-Edmonds algorithm)

• The algorithm starts with a dense/fully connected graph
• Removes edges until the resulting graph is a tree
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MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

For each node select the incoming arc with highest weight
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I saw

her duck

Root
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9

3

3
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3 16
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Detect the cycles, contract them to a ‘single node’
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MST example
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I saw

her duck

Root
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9

3

3
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1
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9
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Pick the best arc into the combined node, break the cycle
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Once all cycles are eliminated, the result is the MST
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Properties of the MST parser

• The MST parser is non-projective
• There is an algorithm with O(n2) time complexity (Tarjan 1977)

• The time complexity increases with typed dependencies
(but still close to quadratic)

• The weights/parameters are associated with edges (often
called ‘arc-factored’)

• We can learn the arc weights directly from a treebank
• However, it is difficult to incorporate non-local features
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CKY for dependency parsing

• The CKY algorithm can be adapted to projective
dependency parsing

• For a naive implementation the complexity increases
drastically O(n6)

– Any of the words within the span can be the head
– Inner loop has to consider all possible splits

• For projective parsing, the observation that the left and
right dependents of a head are independently generated
reduces the complexity to O(n3)

(Eisner 1997)
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Non-local features

• The graph-based dependency parsers use edge-based
features

• This limits the use of more global features
• Some extensions for using ‘more’ global features are

possible
• This often leads non-projective parsing to become

intractable
• Another option is using beam search, and re-ranking based

on different/global features
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External features

• For both type of parsers, one can obtain features that are
based on unsupervised methods such as

– clustering
– dense vector representations (embeddings)
– alignment/transfer from bilingual corpora/treebanks
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Errors from different parsers

• Different parsers make different errors
– Transition based parsers do well on local arcs, worse on

long-distance arcs
– Graph based parsers tend to do better on long-distance

dependencies
• Parser combination is a good way to combine the powers

of different models. Two common methods
– Majority voting: train parsers separately, use the weighted

combination of their results
– Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)
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Evaluation metrics for dependency parsers

• Like CF parsing, exact match is often too strict
• Attachment score is the ratio of words whose heads are

identified correctly.
– Labeled attachment score (LAS) requires the dependency type

to match
– Unlabeled attachment score (UAS) disregards the dependency

type
• Precision/recall/F-measure often used for quantifying success

on identifying a particular dependency type
precision is the ratio of correctly identified dependencies (of a certain

type)
recall is the ratio of dependencies in the gold standard that parser

predicted correctly
f-measure is the harmonic mean of precision and recall(

2×precision×recall
precision+recall

)
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Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS

100%

LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj 0% (assumed)
Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj 0% (assumed)
Recallobj 0%

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 30 / 32



Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Averaging evaluation scores

• Average scores can be
macro-averaged over sentences
micro-averaged over words

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score:

50% (20/40)

– sentence-based average attachment score:

66% ((1 + 1/3)/2)
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Dependency parsing: summary
• Dependency relations are often semantically easier to

interpret
• It is also claimed that dependency parsers are more

suitable for parsing free-word-order languages
• Dependency relations are between words, no phrases or

other abstract nodes are postulated
• Two general methods:

transition based greedy search, non-local features, fast,
less accurate

graph based exact search, local features, slower, accurate
(within model limitations)

• Combination of different methods often result in better
performance

• Non-projective parsing is more difficult
• Most of the recent parsing research has focused on better

machine learning methods (mainly using neural networks)
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References / additional reading material

• Kübler, McDonald, and Nivre (2009) is an accessible book
on to dependency parsing

• The new version of Jurafsky and Martin (2009) also
includes a draft chapter on dependency grammars and
dependency parsing
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