
Example Applications of Finite State
Machines

Data structures and algorithms
for Computational Linguistics III

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2018–2019

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Applications of finite-state methods

• Finite state methods are attractive for formal and
computational reasons

• They are applied in a vast diversity of fields

– Electronic circuit design
– Workflow management
– Games
– Pattern matching

– Tokenization, stemming
– Morphological analysis
– Chunking
– …

• This lecture
– FSA for pattern matching
– FSA for storing a lexicon
– Finite-state morphology

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 1 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Finite state automata
a refresher

• An FSA recognizes and generates a regular language, also
equivalent to regular expressions

• FSA are closed under
– Concatenation
– Kleene star

– Union
– Intersection

– Complement
– Reversal

• Two types:
DFA single transition from each state on each input symbol
NFA transitions to possibly multiple states on a single input

symbol, or without consuming an input symbol (ϵ-NFA)
• Every FSA has a unique minimal DFA

– For every NFA there is a DFA that accepts the same regular
language (determinization)

– A DFA can be minimized to equivalent DFA with minimum
nodes (minimization)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 2 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Finite state transducers
a refresher

• FST transitions are defined on a pair of input–output
symbols

• An FST moves between the states on the input symbol,
while outputting the output symbol

• FSTs define a regular relation
• FSTs are closed under

– Concatenation
– Kleene star

– Union
– Reversal

– Inversion
– Composition

• Not all FSTs can be determinized

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 3 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Naive string match
Example: searching ‘abab’ in ‘abbabbbabababbab’

a b b a b b b a b a b a b b a b

a b ×
×

×
a b ×

×
×

×
a b a b

×
a b a b

×
a b ×

×
×

a b ×

Note the wasted effort after a partial match.

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 4 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

String matching with an NFA
Another solution

Consider running the following NFA over the string.

0 1 2 3 4

a b
a b a b

• The NFA will be in the accepting state when last four letters
processed matches abab (including overlapping matches)

• Is this faster than the naive algorithm?

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 5 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

DFA version
Knuth-Morris-Pratt (KMP) algorithm

0 01 02 013 024

b

a

a

b a

b

a

b

a

b

• DFA processes every input symbol only once
• The resulting DFA has the same number of states

(generally, not much larger than the NFA)
• Approach generalizes to arbitrary regular expressions

without additional computational cost

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 6 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Finite state lexicons

• FSA are an efficient way to
store lexicons

• One can start from NFA for
individual words, and
minimize/determinize the
union of them

• Or there are algorithms for
constructing finite-state
lexicons incrementally

0

1

2

3

4

5

6

7

b
c
d

a

a
o

o

t

w

g

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 7 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Morphology
some definitions

Morpheme is an abstract linguistic unit, often defined as
smallest meaningful or grammatical unit.
Morphemes make up words

Root of a word is a free morpheme, often carrying the
semantic information

Derivational morphemes change the meaning of a word,
sometimes changing the POS

Inflectional morphemes change the syntactic properties of
words

Lemma of a word is its ‘citation’ form, what you look up in
a lexicon

Stem of a (possibly derived) word is the common string
shared by all morphologically related forms

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 8 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Morphological typology

Languages of the world behave differently with respect to how
words are formed.

• Isolating languages have little or no morphology, all words
are simple (e.g., Vietnamese, Chinese)

• Analytic languages have little or no inflectional
morphology (e.g., English)

• Synthetic languages have rich morphological system
– In agglutinative languages each morpheme has a single

function (e.g., Finnish, Turkish)
– In inflecting/fusional a single morpheme indicates multiple

functions (e.g., Latin, Russian)
– Polysynthetic languages may pack multiple ‘words’ in a

single word (e.g., Ainu, Chukchi)
Note that these are tendencies.

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 9 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Where do morphemes go

• Affixation:
attach → un-attach-ed

• Infixes:
aussteigen → auszusteigen

• Circumfixation:
spiel → gespielt

• Root-pattern morphology:
ktb → kitāb ‘book’
ktb → kātib ‘writer’

(Arabic)

• Reduplication:
orang ‘person’ → orang-orang ‘people’
(some Austronesian languages)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 10 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Interaction of morphology and phonology
or morphology and orthography

Morphology and phonology/orthography interact. A few
examples:

• dog-s, but fox-es
• city →citi-es
• stop →stopping
• panic →panick-ed
• goose →geese
• Vowel harmony

ev ‘house’ → ev-ler ‘houses’
oda ‘room’ → oda-lar ‘rooms’ (Turkish)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 11 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Two-level morphology

• We assume that there are two ‘levels’ of representation
– A surface representation which is what we hear or see
– An underlying, an abstract representation for the word

Surface: cat s
Underlying: cat ⟨PL⟩

• An FST is used to map the underlying representation to the
surface representation (generation)

• If we run the FST in the inverse direction, we get an
analysis

• Often the FST is a complex combination of many small FSA
or FSTs

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 12 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Two-level morphology
a typical architecture

• Typically, lexicon is converted to FSA
• Concatenated (or composed) with morphological rules

(affixation, applying templates, …)
• The result is composed with phonological/orthographic

alternations
• The phonological/orthographic rules can be designed as

cascades (composition), or can be applied in parallel

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 13 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Two-level morphology
a (simplified) example

L

0

1

2

3

4

5

6

7

b
c
f

a

a
o

o

t
w

x

M
0 1

⟨PL⟩:⟨S⟩

P
0 1 2 3

x

not x

ϵ:e ⟨S⟩:s

Generator: LM ◦ P Analyzer: (LM ◦ P)−1

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 14 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

How to specify morphological analyzers
• Lexicons are easiest to specify as lists of (root) words

cat
dog
fox
…

• For affixation, regular expressions (or regular rewrite rules)
Nplu → N ⟨PL⟩:⟨S⟩

• For phonological/orthographic alternations context
sensitive rules
⟨S⟩ →es / x _

• There are a few standard languages for specifying
morphological analyzers

– SFST
– Xerox languages: XFST, Twolc, lexc
– OpenFST OpenGRM (more general purpose)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 15 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

XFST
A quick reference some common notation/operations

? any symbol
0 empty string (ϵ)
(a) optional a
[a|b] grouping
a* Kleene start
a+ Kleene plus
a b concatenation
a&b intersection
a|b union
~b complement
a-b difference
{cat} concatenation of c a t
a:b FST rule with input ‘a’ and output ‘b’
a .o. b compose a with b
a -> b unconditionally replace a to b

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 16 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

XFST (cont.)
A quick reference some common notation/operations

a (->)b optionally replace a to b
a -> b || c _ replace a to b only after c
a -> b || c _ d replace a to b only after c and before d

• There are (at least) two free implementations of xfst
– Foma
– hfst-xfst (part of HFST)

• You will receive a separate ‘tutorial’ (and an exercise) on
working with xfst and lexc

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 17 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Tools of the trade

Some of the practical, feely-available, tools (with an emphasis
on ones targeted for CL) include:

• Gertjan van Noord’s FSA tools
• OpenFST: a general purpose finite state library
• Helsinki finite-state technology (HFST): library tools from

University of Helsinki
• Foma: a re-implementation of Xerox’s xfst, a

language/toolbox for defining/manipulating FST
• SFST another language/toolbox for

defining/manipulating FSTs

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 18 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Wrapping up

• Finite-state tools are commonly used in a number of CL
task

• There are off-the-shelf free tools

Next:
• Dependency grammars and dependency parsing
• Constituency parsing

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 19 / 19

References / additional reading material

• Jurafsky and Martin (2009, Ch. 3)
• Roche and Schabes (1997) includes more examples of FSTs

used for NLP
• The Xerox languages and tools are described in Beesley

and Karttunen (2003)
• HFST and Foma web pages include some documentation

and (links to) tutorials

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 A.1

References / additional reading material (cont.)

Beesley, Kenneth R. and Lauri Karttunen (2003). “Finite-state morphology: Xerox tools
and techniques”. In: CSLI, Stanford.

Hulden, Mans (2009). “Foma: a finite-state compiler and library”. In: Proceedings of the
12th Conference of the European Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, pp. 29–32.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. second. Pearson Prentice Hall. isbn: 978-0-13-504196-3.

Lindén, Krister, Erik Axelson, Senka Drobac, Sam Hardwick, Juha Kuokkala,
Jyrki Niemi, Tommi A. Pirinen, and Miikka Silfverberg (2013). “HFST — A System
for Creating NLP Tools”. In: Systems and Frameworks for Computational Morphology.
Ed. by Cerstin Mahlow and Michael Piotrowski. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 53–71.

Roche, Emmanuel and Yves Schabes (1997). Finite-state Language Processing. A Bradford
book. MIT Press. isbn: 9780262181822.

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 A.2

https://www.let.rug.nl/vannoord/Fsa/fsa.html
http://www.openfst.org/
https://hfst.github.io/
https://fomafst.github.io/
http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
https://hfst.github.io/
https://fomafst.github.io/

	Example Applications of Finite State Machines
	Introduction
	Applications of finite-state methods
	Finite state automata
	Finite state transducers

	Pattern matching
	Naive string match
	String matching with an NFA
	DFA version

	Finite-state lexicons
	Finite state lexicons

	Morphology: a very short introduction
	Morphology
	Morphological typology
	Where do morphemes go
	Interaction of morphology and phonology

	Finite-state morphology
	Two-level morphology
	Two-level morphology
	Two-level morphology
	How to specify morphological analyzers

	XFST: a quick introduction
	XFST
	XFST

	
	Tools of the trade
	Wrapping up

	Appendix
	References / additional reading material
	References / additional reading material

