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Applications of finite-state methods

• Finite state methods are attractive for formal and
computational reasons

• They are applied in a vast diversity of fields

– Electronic circuit design
– Workflow management
– Games
– Pattern matching

– Tokenization, stemming
– Morphological analysis
– Chunking
– …

• This lecture
– FSA for pattern matching
– FSA for storing a lexicon
– Finite-state morphology
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Finite state automata
a refresher

• An FSA recognizes and generates a regular language, also
equivalent to regular expressions

• FSA are closed under
– Concatenation
– Kleene star

– Union
– Intersection

– Complement
– Reversal

• Two types:
DFA single transition from each state on each input symbol
NFA transitions to possibly multiple states on a single input

symbol, or without consuming an input symbol (ϵ-NFA)
• Every FSA has a unique minimal DFA

– For every NFA there is a DFA that accepts the same regular
language (determinization)

– A DFA can be minimized to equivalent DFA with minimum
nodes (minimization)
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Finite state transducers
a refresher

• FST transitions are defined on a pair of input–output
symbols

• An FST moves between the states on the input symbol,
while outputting the output symbol

• FSTs define a regular relation
• FSTs are closed under

– Concatenation
– Kleene star

– Union
– Reversal

– Inversion
– Composition

• Not all FSTs can be determinized
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Naive string match
Example: searching ‘abab’ in ‘abbabbbabababbab’

a b b a b b b a b a b a b b a b

a b ×
×

×
a b ×

×
×

×
a b a b

×
a b a b

×
a b ×

×
×

a b ×

Note the wasted effort after a partial match.
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String matching with an NFA
Another solution

Consider running the following NFA over the string.

0 1 2 3 4

a b
a b a b

• The NFA will be in the accepting state when last four letters
processed matches abab (including overlapping matches)

• Is this faster than the naive algorithm?
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DFA version
Knuth-Morris-Pratt (KMP) algorithm

0 01 02 013 024

b
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b a

b
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b
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• DFA processes every input symbol only once
• The resulting DFA has the same number of states

(generally, not much larger than the NFA)
• Approach generalizes to arbitrary regular expressions

without additional computational cost
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Finite state lexicons

• FSA are an efficient way to
store lexicons

• One can start from NFA for
individual words, and
minimize/determinize the
union of them

• Or there are algorithms for
constructing finite-state
lexicons incrementally
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Morphology
some definitions

Morpheme is an abstract linguistic unit, often defined as
smallest meaningful or grammatical unit.
Morphemes make up words

Root of a word is a free morpheme, often carrying the
semantic information

Derivational morphemes change the meaning of a word,
sometimes changing the POS

Inflectional morphemes change the syntactic properties of
words

Lemma of a word is its ‘citation’ form, what you look up in
a lexicon

Stem of a (possibly derived) word is the common string
shared by all morphologically related forms
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Morphological typology

Languages of the world behave differently with respect to how
words are formed.

• Isolating languages have little or no morphology, all words
are simple (e.g., Vietnamese, Chinese)

• Analytic languages have little or no inflectional
morphology (e.g., English)

• Synthetic languages have rich morphological system
– In agglutinative languages each morpheme has a single

function (e.g., Finnish, Turkish)
– In inflecting/fusional a single morpheme indicates multiple

functions (e.g., Latin, Russian)
– Polysynthetic languages may pack multiple ‘words’ in a

single word (e.g., Ainu, Chukchi)
Note that these are tendencies.
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Where do morphemes go

• Affixation:
attach → un-attach-ed

• Infixes:
aussteigen → auszusteigen

• Circumfixation:
spiel → gespielt

• Root-pattern morphology:
ktb → kitāb ‘book’
ktb → kātib ‘writer’

(Arabic)

• Reduplication:
orang ‘person’ → orang-orang ‘people’
(some Austronesian languages)
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Interaction of morphology and phonology
or morphology and orthography

Morphology and phonology/orthography interact. A few
examples:

• dog-s, but fox-es
• city →citi-es
• stop →stopping
• panic →panick-ed
• goose →geese
• Vowel harmony

ev ‘house’ → ev-ler ‘houses’
oda ‘room’ → oda-lar ‘rooms’ (Turkish)
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Two-level morphology

• We assume that there are two ‘levels’ of representation
– A surface representation which is what we hear or see
– An underlying, an abstract representation for the word

Surface: cat s
Underlying: cat ⟨PL⟩

• An FST is used to map the underlying representation to the
surface representation (generation)

• If we run the FST in the inverse direction, we get an
analysis

• Often the FST is a complex combination of many small FSA
or FSTs
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Two-level morphology
a typical architecture

• Typically, lexicon is converted to FSA
• Concatenated (or composed) with morphological rules

(affixation, applying templates, …)
• The result is composed with phonological/orthographic

alternations
• The phonological/orthographic rules can be designed as

cascades (composition), or can be applied in parallel
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Two-level morphology
a (simplified) example
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ϵ:e ⟨S⟩:s

Generator: LM ◦ P Analyzer: (LM ◦ P)−1
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How to specify morphological analyzers
• Lexicons are easiest to specify as lists of (root) words

cat
dog
fox
…

• For affixation, regular expressions (or regular rewrite rules)
Nplu → N ⟨PL⟩:⟨S⟩

• For phonological/orthographic alternations context
sensitive rules
⟨S⟩ →es / x _

• There are a few standard languages for specifying
morphological analyzers

– SFST
– Xerox languages: XFST, Twolc, lexc
– OpenFST OpenGRM (more general purpose)
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XFST
A quick reference some common notation/operations

? any symbol
0 empty string (ϵ)
(a) optional a
[a|b] grouping
a* Kleene start
a+ Kleene plus
a b concatenation
a&b intersection
a|b union
~b complement
a-b difference
{cat} concatenation of c a t
a:b FST rule with input ‘a’ and output ‘b’
a .o. b compose a with b
a -> b unconditionally replace a to b
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XFST (cont.)
A quick reference some common notation/operations

a (->)b optionally replace a to b
a -> b || c _ replace a to b only after c
a -> b || c _ d replace a to b only after c and before d

• There are (at least) two free implementations of xfst
– Foma
– hfst-xfst (part of HFST)

• You will receive a separate ‘tutorial’ (and an exercise) on
working with xfst and lexc
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Tools of the trade

Some of the practical, feely-available, tools (with an emphasis
on ones targeted for CL) include:

• Gertjan van Noord’s FSA tools
• OpenFST: a general purpose finite state library
• Helsinki finite-state technology (HFST): library tools from

University of Helsinki
• Foma: a re-implementation of Xerox’s xfst, a

language/toolbox for defining/manipulating FST
• SFST another language/toolbox for

defining/manipulating FSTs

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 18 / 19

Introduction Pattern matching Finite-state lexicons Morphology Finite-state morphology XFST: a quick introduction

Wrapping up

• Finite-state tools are commonly used in a number of CL
task

• There are off-the-shelf free tools

Next:
• Dependency grammars and dependency parsing
• Constituency parsing
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References / additional reading material

• Jurafsky and Martin (2009, Ch. 3)
• Roche and Schabes (1997) includes more examples of FSTs

used for NLP
• The Xerox languages and tools are described in Beesley

and Karttunen (2003)
• HFST and Foma web pages include some documentation

and (links to) tutorials
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https://www.let.rug.nl/vannoord/Fsa/fsa.html
http://www.openfst.org/
https://hfst.github.io/
https://fomafst.github.io/
http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
https://hfst.github.io/
https://fomafst.github.io/
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