Data Structures and Algorithms III Formal languages and automata

Çağrı Çöltekin /tʃaːrˈuɪ tʃœltecˈın/ ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2018–2019

Practical matters

The second part of the course will be somewhat different:

- The focus will shift more towards Computational Linguistics topics / applications
- We will review more specialized data structures and algorithms (e.g., automata, parsing)
- Some overlap with parsing class (but with more emphasis on practical sides)
- Less focus on programming

Practical matters

The second part of the course will be somewhat different:

- The focus will shift more towards Computational Linguistics topics / applications
- We will review more specialized data structures and algorithms (e.g., automata, parsing)
- Some overlap with parsing class (but with more emphasis on practical sides)
- Less focus on programming

A quick poll: opinions about switching to Python.

An overview of the upcoming topics

- Background on formal languages and automata (today)
- Finite state automata and regular languages
- Finite state transducers (FST)
 - FSTs and computational morphology
- Dependency grammars and dependency parsing
- Context-free grammars and constituency parsing

Assignments

- Assignment policy is similar to the first part of the course
- Two graded assignments:
 - Finite state methods (due early Jan)
 - Parsing (due mid Feb)
- There will be more ungraded assignments they are part of the course work, they are not 'optional'

This lecture

An overview

- Background: some definitions on phrase structure grammars and rewrite rules
- Chomsky hierarchy of (formal) language classes
- Background: computational complexity
- Automata, their relation to formal languages
- Formal languages and automata in natural language processing
- A brief note on learnability of natural languages

Why study formal languages

- Formal languages are an important area of the theory of computation
- They originate from linguistics, and they have been used in formal/computational linguistics

Alphabet

- An *alphabet* is a set of symbols
- We generally denote an alphabet using the symbol $\boldsymbol{\Sigma}$
- In our examples, we will use lowercase ASCII letters for the individual symbols, e.g., $\Sigma = \{a,b,c\}$
- Alphabet does not match the every-day use:
 - In some cases one may want to use a binary alphabet, $\Sigma = \{0,1\}$
 - If we want to define a grammar for arithmetic operations, we may want to have $\Sigma = \{0, 1, 2, 3, \dots, 9, +, -, \times, /\}$
 - If we are interested in natural language syntax our alphabet is the set of natural language words,
 - $\Sigma = \{ the, on, cat, dog, mat, sat, \ldots \}$

Strings

• A *string* over an alphabet is a finite sequence symbols from the alphabet

– a, ab, acbcaa are example strings over $\Sigma = \{a,b,c\}$

- The *empty string* is denoted by ϵ
- The Σ^* denotes all strings that can be formed using alphabet Σ , including the empty string ϵ
- The Σ^+ is a shorthand for $\Sigma^*-\varepsilon$
- Similarly a* means the symbol a repeated zero or more times, a+ means a repeated one or more times
- We use aⁿ for exactly n repetitions of a
- The length of a string u is denoted by |u|, e.g., |abc| = 3, or if u = aabbcc, |u| = 6
- Concatenation of two string u and v is denoted by uv, e.g., for u = ab and v = ca, uv = abca

Language

- A (formal) language is a set of string over an alphabet
 - The set of strings of length 2 over $\{0, 1\}$: $\{00, 01, 10, 11\}$
 - The set of strings with even number of 1's over $\{0,1\}$: $\{\varepsilon,101,0,11,111110,\ldots\}$
 - The set of string that retain alphabetical ordering over $\{a,b,c\}$:
 - $\{a, ab, abc, ac, abcc, \ldots\}$
 - The set of strings of words that form grammatically correct English sentences
- Strings that are member of a language is called *sentences* (or sometimes *words*) of the language

Grammar

- A *grammar* is a finite description of a language
- A common way of specifying a grammar is based on a set of *rewrite rules* (or *phrase structure rules*)
- We represent *non-terminal symbols* with uppercase letters
- We represent *terminal symbols* with lowercase letters
- S is the *start symbol*
- If a string can be generated from S using the rewrite rules, the string is a valid sentence in the language

$S \rightarrow$	ΑB
$S \rightarrow$	SAB
$A \rightarrow$	a
$B \rightarrow$	b

Grammar

- A *grammar* is a finite description of a language
- A common way of specifying a grammar is based on a set of *rewrite rules* (or *phrase structure rules*)
- We represent *non-terminal symbols* with uppercase letters
- We represent *terminal symbols* with lowercase letters
- S is the *start symbol*
- If a string can be generated from S using the rewrite rules, the string is a valid sentence in the language

 $\begin{array}{ccc} S \rightarrow & A B \\ S \rightarrow & S A B \\ A \rightarrow & a \\ B \rightarrow & b \end{array}$

Q: What does this grammar define?

Phrase structure grammars: more formally

A phrase structure grammar is a tuple $G = (\Sigma, N, S, R)$ where

- Σ is an alphabet of terminal symbols
- N are a set of non-terminal symbols
- S is a special 'start' symbol $\in N$
- R is a set of rules of the form

$$\alpha \to \beta$$

where α and β are strings from $\Sigma \cup N$

A string u is in the language defined by G, if it can be derived from S.

Grammar	
$S \rightarrow$	AB
$S \rightarrow$	S A B
$A \rightarrow$	a
$B \rightarrow$	b

Derivation of abab	
$S \rightarrow SAB$	
5 - 7 5 KB	

Grammar	
$S \rightarrow$	AB
$S \rightarrow$	S A B
$A \rightarrow$	a
$B \rightarrow$	b

Derivation of abab	
$\begin{array}{l} S \Rightarrow SAB \\ SAB \Rightarrow ABAB \end{array}$	

Grammar	
$S \rightarrow$	AB
$S \rightarrow$	SAB
$A \rightarrow$	a
$B \rightarrow$	b

Derivation of abab	
$S \Rightarrow SAB$	
$SAB \Rightarrow ABAB$	
$ABAB \Rightarrow aBAB$	

Grammar	
$S \rightarrow$	AB
$S \rightarrow$	S A B
$A \rightarrow$	a
$B \rightarrow$	b

Derivation of abab	
$S \Rightarrow SAB$	$aBAB \Rightarrow abAB$
$SAB \Rightarrow ABAB$	
$ABAB \Rightarrow \mathfrak{a}BAB$	

Grammar	
$S \rightarrow$	AB
$S \rightarrow$	S A B
$A \rightarrow$	a
$B \rightarrow$	b

Derivation of abab	
$S \Rightarrow SAB$	$aBAB \Rightarrow abAB$
$SAB \Rightarrow ABAB$	$abAB \Rightarrow abaB$
$ABAB \Rightarrow aBAB$	

Grammar	
$S \rightarrow$	AB
$S \rightarrow$	S A B
$A \rightarrow$	a
$B \rightarrow$	b

Derivation of abab	
$S \Rightarrow SAB$	$aBAB \Rightarrow abAB$
$SAB \Rightarrow ABAB$	$abAB \Rightarrow abaB$
$ABAB \Rightarrow \mathfrak{a}BAB$	$abaB \Rightarrow abab$

Grammar		
$S \rightarrow$	АB	
$S \rightarrow$	S A B	
$A \rightarrow$	a	
$B \rightarrow$	b	
	J	

Derivation of abab	
$S \Rightarrow SAB$	$aBAB \Rightarrow abAB$
$SAB \Rightarrow ABAB$	$abAB \Rightarrow abaB$
$ABAB \Rightarrow \mathfrak{a}BAB$	$abaB \Rightarrow abab$

- Intermediate strings of terminals and non-terminals are called *sentential forms*
- $S \stackrel{*}{\Rightarrow} abab$: the string is in the language
- Q: What if string was not in the language?
- Q: Is there another derivation sequence?

Chomsky hierarchy of (formal) languages

- Defined for formalizing natural language syntax
- Definitions are in terms of the restrictions on production rules of the grammar
- Also part of theory of computation
- Each language class corresponds to a class of (abstract) machines
- Other well-studied classes exist

Left regular	
1. $A \rightarrow a$	
2. $A \rightarrow Ba$	
3. $A \rightarrow \epsilon$	

Right regular1. $A \rightarrow a$ 2. $A \rightarrow aB$ 3. $A \rightarrow \epsilon$

- Least expressive, but easy to process
- Used in many NLP applications
- Defines the set of languages expressed by *regular expressions*
- Regular grammars define only regular languages (but reverse is not true)
- We will discuss it in more detail soon

an example

Write a right- and a left-regular grammar ab*c

an example

Write a right- and a left-regular grammar ab*c

left	right	
$S \to Ac$	$S \to aA$	
$A \rightarrow Ab$	$A \rightarrow bA$	
A ightarrow a	$A \rightarrow c$	

an example

Write a right- and a left-regular grammar ab*c

left	right	
$S \to Ac$	$S \to a A$	
$A \rightarrow Ab$	$A \rightarrow bA$	
A ightarrow a	A ightarrow c	

Can you define a regular grammar for

- aⁿbⁿ?
- $a^5b^5?$

an example

Write a right- and a left-regular grammar ab*c

left	right	
$S \to Ac$	$S \to aA$	
$A \rightarrow Ab$	$A \rightarrow bA$	
$A \to a$	$A \rightarrow c$	

Can you define a regular grammar for

- aⁿbⁿ?
- a⁵b⁵?

Derive the string abbbc using one of your grammars

an example

Write a right- and a left-regular grammar ab*c

left	right	
$S \to Ac$	$S \to a A$	
$A \rightarrow Ab$	$A \rightarrow bA$	
$A \to a$	A ightarrow c	

Can you define a regular grammar for

- aⁿbⁿ?
- a⁵b⁵?

Derive the string abbbc using one of your grammars

left

$$S \Rightarrow Ac \Rightarrow Abc \Rightarrow Abbc \Rightarrow Abbc \Rightarrow Abbbc \Rightarrow abbbc$$

right

$$\begin{array}{l} S\Rightarrow aA\Rightarrow abA\Rightarrow abbA\Rightarrow\\ abbbA\Rightarrow abbbc\end{array}$$

an example

Write a right- and a left-regular grammar ab*c

leftright
$$S \rightarrow Ac$$
 $S \rightarrow aA$ $A \rightarrow Ab$ $A \rightarrow bA$ $A \rightarrow a$ $A \rightarrow c$

Can you define a regular grammar for

- aⁿbⁿ?
- a⁵b⁵?

Derive the string abbbc using one of your grammars

left

$$S \Rightarrow Ac \Rightarrow Abc \Rightarrow Abbc \Rightarrow Abbc \Rightarrow Abbbc \Rightarrow abbbc$$

right

$$S \Rightarrow aA \Rightarrow abA \Rightarrow abbA \Rightarrow abbbA \Rightarrow abbbA \Rightarrow abbbc$$

These grammars are *weakly equivalent*: they generate the same language, but derivations differ

Context-free grammars (CFG)

CFG rules

$$A \to \alpha$$

where A is a *single* non-terminal α is a possibly empty sequence of terminals and non-terminals

- More expressive than regular languages
- Syntax of programming languages are based on CFGs
- Many applications for natural languages too (more on this later)

Context-free grammars

an example

The example grammar:

Example CFG			
$\begin{array}{cccc} S & ightarrow & NPV \ NP & ightarrow & John \end{array}$	VP VP Mary V	\rightarrow \rightarrow	V NP saw

Exercise: derive 'John saw Mary'

Context-free grammars

an example

The example grammar:

Example CFG	
$egin{array}{ccc} S & ightarrow & NP \ VP \ NP & ightarrow & John \ \ Mary \end{array}$	$egin{array}{ccc} VP & ightarrow & V \ NP \ V & ightarrow & saw \end{array}$

more exercises / questions

• Define a (non-regular) CFG for language ab*c

more exercises / questions

- Define a (non-regular) CFG for language ab*c
- Can you define a CFG for aⁿbⁿ?

more exercises / questions

- Define a (non-regular) CFG for language $\mathfrak{a}\mathfrak{b}^*c$
- Can you define a CFG for aⁿbⁿ?
- Can you define a CFG for aⁿbⁿcⁿ?

more exercises / questions

- Define a (non-regular) CFG for language ab*c
- Can you define a CFG for aⁿbⁿ?
- Can you define a CFG for aⁿbⁿcⁿ?
- Can you define a CFG for aⁿb^mcⁿd^m?

Context-sensitive grammars

Context-sensitive rules

 $\alpha A\beta \to \alpha \gamma \beta$

where A is a non-terminal symbol, α and β are possibly empty strings of terminals and non-terminals, and γ is a non-empty string of terminal and non-terminal symbols.

- There is also an alternative definition through non-contracting grammars
- A rule of the form $S \to \varepsilon$ is allowed

Context-sensitive grammars

an example

- Can you define a context-sensitive grammar for aⁿbⁿcⁿ?
- Can you define a context-sensitive grammar for aⁿb^mcⁿd^m?

Unrestricted grammars

- The most expressive class of languages in the Chomsky hierarchy is *recursively enumerable* (RE) languages
- RE languages are those for which there is an algorithm to enumerate all sentences
- RE languages are generated by *unrestricted grammars*
- Unrestricted grammars do not limit the rewrite rules in any way (except LHS cannot be empty)
- Mostly theoretical interest, not much practical use

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

- O(1) constant
- $O(\log n)$ logarithmic
 - O(n) linear
- $O(n \log n)$ log linear
 - $O(n^2)$ quadratic
 - $O(n^3)$ cubic
 - $O(2^n)$ exponential
 - O(n!) factorial

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential O(n!) factorial Given T(n), what is O(n)?

• $T(n) = \log(5n)$

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

- O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential
 - O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

- O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential
 - O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$
- $T(n) = n^2 + 10$

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$
- $T(n) = n^2 + 10$
- $T(n) = n^5 + n^4$

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$
- $T(n) = n^2 + 10$
- $T(n) = n^5 + n^4$
- $T(n) = n^5 + 4^n$

A(nother) review of computational complexity Big-O notation

Big-O notation is used for describing *worst-case order of complexity* of algorithms

O(1) constant $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ log linear $O(n^2)$ quadratic $O(n^3)$ cubic $O(2^n)$ exponential O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$
- $T(n) = n^2 + 10$
- $T(n) = n^5 + n^4$
- $T(n) = n^5 + 4^n$
- $T(n) = n! + 2^n$

Big-O notation and order of complexity the picture

Big-O notation and order of complexity the picture (with log y-axis)

A(nother) review of computational complexity P, NP, NP-complete and all that

- A major division of complexity classes according to Big-O notation is between
 - P polynomial time algorithms
 - NP non-deterministic polynomial time algorithms
- A big question in computing is whether P = NP
- All problems in NP can be reduced in polynomial time to a problem in a subclass of NP, (*NP-complete*)
 - Solving an NP complete problem in P would mean proving P = NP

Video from https://www.youtube.com/watch?v=YX40hbAHx3s

Grammars and automata

Language	Grammar	Automata
Regular	Regular	Finite-state
Context-free	Context-free	Push-down
Context-sensitive	Context-sensitive	Linear-bounded
Recursively-enumerable	Unrestricted	Turing machines

RE languages and Turing machines

- Recursively enumerable languages can be generated by *Turing machines*
- Turing machine is an simple model of computation that can compute any computable function
 - A Turing machine manipulates symbols on an infinite tape, using a finite table of rules
- A Turing machine can enumerate all string defined by an unrestricted phrase structure grammar
- The membership problem of RE languages is not decidable

Context-sensitive languages and LBA

- Context-sensitive languages can be generated using a restricted form of Turing machine, called *linear-bounded automata*
- Although decidable, recognition of a string with a context-sensitive grammar is computationally intractable (PSPACE-complete)

Context-free languages and pushdown automata

- Context-free languages are recognized by *pushdown automata*
- Pushdown automata consist of a finite-state control mechanism and a stack
- Computationally feasible solutions exists for many problems related to context-free grammars
- There are polynomial time algorithms for recognizing strings of context-free languages (we will return to these in lectures on parsing)

Regular languages and FSA

- Regular languages can be recognized using *finite-state automata* (FSA)
- A FSA consist of a finite set of states with directed edges between them
- Edges are labeled with the terminal symbols, and tell the automation to which state to move on a given input symbol

Chomsky hierarchy and natural language syntax Where do natural languages fit?

- The class of grammars adequate for formally describing natural languages has been an important question for (computational) linguistics
- For the most part, context-free grammars are enough, but there are some examples, e.g., from Swiss German (Shieber 1985) Jan säit das...

Where do natural languages fit?

the picture

• Often a superset of CF languages, *mildly context-sensitive languages* are considered adequate

Where do natural languages fit?

the picture

- Often a superset of CF languages, *mildly context-sensitive languages* are considered adequate
- Note, though, we do not even need full RE expressivity

Where do natural languages fit?

the picture

- Often a superset of CF languages, *mildly context-sensitive languages* are considered adequate
- Note, though, we do not even need full RE expressivity
- Modern/computational theories of grammars range from mildly CS (TAG, CCG) to Turing complete (HPSG, LFG?)

Learnability natural languages

language acquisition & nature vs. nurture

- A central question in linguistics have been about 'learnability' of the languages
- Some linguists claim that natural languages are not learnable, hence, humans born with a innate *language acquisition device*
- A poplar theory of the *language acquisition device* is called *principles and parameters*
- This has created a long-lasting debate, which is also related to even longer-lasting debate on nature vs. nurture

Formal languages and learnability

- Some of the arguments in the learnability debate has been based on results on formal languages
- It is shown (Gold 1967) that none of the languages in the Chomsky hierarchy are learnable from positive input
- The applicability of such results to human language acquisition is questionable
- Computational modeling/experiments may help here (another job for computational linguists)

Wrapping up

- Formal languages has a central role in the theory of computation, as well as in formal/computational linguistics
- Practically-useful classes of languages in Chomsky hierarchy is regular and context-free languages (we will return to these in more detail)
- Natural language syntax can be described mostly by CFGs

Wrapping up

- Formal languages has a central role in the theory of computation, as well as in formal/computational linguistics
- Practically-useful classes of languages in Chomsky hierarchy is regular and context-free languages (we will return to these in more detail)
- Natural language syntax can be described mostly by CFGs

Next:

• Finite state automata

References

References / additional reading material

- The classic reference for theory of computation is Hopcroft and Ullman (1979) (and its successive editions)
- Sipser (2006) is another good textbook on the topic
- A popular nativist account of language acquisition debate is Pinker (1994)
- A popular non-nativist (somewhat empiricist) book on language acquisition is Clark and Lappin (2011), which also covers discussion of (Gold 1967) and later work

References

References / additional reading material (cont.)

- Clark, Alexander and Shalom Lappin (2011). *Linguistic Nativism and the Poverty of the Stimulus*. Oxford: Wiley-Blackwell. ISBN: 978-1-4051-8785-5.
- Gold, E. Mark (1967). "Language identification in the limit". In: Information and Control 10.5, pp. 447–474.
- Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Pinker, Steven (1994). *The language instinct: the new science of language and mind*. Penguin Books.
- Shieber, Stuart M. (1985). "Evidence against the context-freeness of natural language". In: *Linguistics and Philosophy* 8.3, pp. 333–343. DOI: 10.1007/BF00630917.
- Sipser, Michael (2006). Introduction to the Theory of Computation. second. Thomson Course Technology. ISBN: 0-534-95097-3.