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Practical matters

The second part of the course will be somewhat different:

• The focus will shift more towards Computational
Linguistics topics / applications

• We will review more specialized data structures and
algorithms (e.g., automata, parsing)

• Some overlap with parsing class (but with more emphasis
on practical sides)

• Less focus on programming

A quick poll: opinions about switching to Python.

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 1 / 34
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An overview of the upcoming topics

• Background on formal languages and automata (today)
• Finite state automata and regular languages
• Finite state transducers (FST)

– FSTs and computational morphology
• Dependency grammars and dependency parsing
• Context-free grammars and constituency parsing
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Assignments

• Assignment policy is similar to the first part of the course
• Two graded assignments:

– Finite state methods (due early Jan)
– Parsing (due mid Feb)

• There will be more ungraded assignments – they are part
of the course work, they are not ‘optional’
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This lecture
An overview

• Background: some definitions on phrase structure
grammars and rewrite rules

• Chomsky hierarchy of (formal) language classes
• Background: computational complexity
• Automata, their relation to formal languages
• Formal languages and automata in natural language

processing
• A brief note on learnability of natural languages
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Why study formal languages

• Formal languages are an important area of the theory of
computation

• They originate from linguistics, and they have been used in
formal/computational linguistics
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Definitions
Alphabet

• An alphabet is a set of symbols
• We generally denote an alphabet using the symbol Σ
• In our examples, we will use lowercase ASCII letters for

the individual symbols, e.g., Σ = {a,b, c}

• Alphabet does not match the every-day use:
– In some cases one may want to use a binary alphabet,

Σ = {0, 1}
– If we want to define a grammar for arithmetic operations,

we may want to have Σ = {0, 1, 2, 3, . . . , 9,+,−,×, /}
– If we are interested in natural language syntax our alphabet

is the set of natural language words,
Σ = {the,on, cat,dog,mat, sat, . . .}
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Definitions
Strings

• A string over an alphabet is a finite sequence symbols from
the alphabet

– a, ab, acbcaa are example strings over Σ = {a,b, c}

• The empty string is denoted by ϵ

• The Σ∗ denotes all strings that can be formed using
alphabet Σ, including the empty string ϵ

• The Σ+ is a shorthand for Σ∗ − ϵ

• Similarly a∗ means the symbol a repeated zero or more
times, a+ means a repeated one or more times

• We use an for exactly n repetitions of a
• The length of a string u is denoted by |u|, e.g., |abc| = 3, or

if u = aabbcc, |u| = 6

• Concatenation of two string u and v is denoted by uv, e.g.,
for u = ab and v = ca, uv = abca
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Definitions
Language

• A (formal) language is a set of string over an alphabet
– The set of strings of length 2 over {0, 1}:

{00, 01, 10, 11}
– The set of strings with even number of 1’s over {0, 1}:

{ϵ, 101, 0, 11, 111110, . . .}
– The set of string that retain alphabetical ordering over

{a,b, c}:
{a,ab,abc,ac,abcc, . . .}

– The set of strings of words that form grammatically correct
English sentences

• Strings that are member of a language is called sentences (or
sometimes words) of the language
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Definitions
Grammar

• A grammar is a finite description of a
language

• A common way of specifying a grammar is
based on a set of rewrite rules (or phrase
structure rules)

• We represent non-terminal symbols with
uppercase letters

• We represent terminal symbols with
lowercase letters

• S is the start symbol
• If a string can be generated from S using

the rewrite rules, the string is a valid
sentence in the language

S → AB

S → SAB

A → a

B → b

Q: What does
this grammar
define?
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Practical matters Formal languages Languages and Complexity Formal & natural languages

Definitions
Grammar

• A grammar is a finite description of a
language

• A common way of specifying a grammar is
based on a set of rewrite rules (or phrase
structure rules)

• We represent non-terminal symbols with
uppercase letters

• We represent terminal symbols with
lowercase letters

• S is the start symbol
• If a string can be generated from S using

the rewrite rules, the string is a valid
sentence in the language

S → AB

S → SAB

A → a

B → b

Q: What does
this grammar
define?

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 9 / 34



Practical matters Formal languages Languages and Complexity Formal & natural languages

Definitions
Phrase structure grammars: more formally

A phrase structure grammar is a tuple G = (Σ,N,S,R) where
Σ is an alphabet of terminal symbols
N are a set of non-terminal symbols
S is a special ‘start’ symbol ∈ N

R is a set of rules of the form

α → β

where α and β are strings from Σ ∪N

A string u is in the language defined by G,
if it can be derived from S.
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Definitions
Grammars and derivations

Grammar

S → AB

S → SAB

A → a

B → b

Derivation of abab

S ⇒ SAB

SAB ⇒ ABAB

ABAB ⇒ aBAB

aBAB ⇒ abAB

abAB ⇒ abaB

abaB ⇒ abab

• Intermediate strings of terminals and
non-terminals are called sentential forms

• S
∗⇒ abab: the string is in the language

Q: What if string was not in the language?
Q: Is there another derivation sequence?
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Chomsky hierarchy of (formal) languages

• Defined for formalizing
natural language syntax

• Definitions are in terms of
the restrictions on
production rules of the
grammar

• Also part of theory of
computation

• Each language class
corresponds to a class of
(abstract) machines

• Other well-studied classes
exist

Regular

Context Free

Context Sensitive

Recursively Enumerable
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Regular grammars

Left regular

1. A → a

2. A → Ba

3. A → ϵ

Right regular

1. A → a

2. A → aB

3. A → ϵ

• Least expressive, but easy to process
• Used in many NLP applications
• Defines the set of languages expressed by regular

expressions
• Regular grammars define only regular languages (but

reverse is not true)
• We will discuss it in more detail soon
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Regular grammars
an example

Write a right- and a left-regular
grammar ab∗c

left

S → Ac

A → Ab

A → a

right

S → aA

A → bA

A → c

Can you define a regular
grammar for

• anbn?
• a5b5?

Derive the string abbbc using
one of your grammars

left

S ⇒ Ac ⇒ Abc ⇒ Abbc ⇒
Abbbc ⇒ abbbc

right

S ⇒ aA ⇒ abA ⇒ abbA ⇒
abbbA ⇒ abbbc

These grammars are weakly equivalent:
they generate the same language, but
derivations differ

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 14 / 34
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Context-free grammars (CFG)

CFG rules

A → α

where A is a single non-terminal α is a possibly empty se-
quence of terminals and non-terminals

• More expressive than regular languages
• Syntax of programming languages are based on CFGs
• Many applications for natural languages too (more on this

later)
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Context-free grammars
an example

The example grammar:
Example CFG

S → NP VP VP → V NP
NP → John | Mary V → saw

Exercise: derive ‘John saw Mary’

Derivation
S ⇒NP VP ⇒John VP⇒John V NP ⇒John saw NP⇒John saw Mary
or, S ∗⇒John saw Mary

S

NP

John

VP

V

saw

NP

Mary
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Contxt-free languages
more exercises / questions

• Define a (non-regular) CFG for language ab∗c

• Can you define a CFG for anbn?
• Can you define a CFG for anbncn?
• Can you define a CFG for anbmcndm?

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 17 / 34
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Context-sensitive grammars

Context-sensitive rules

αAβ → αγβ

where A is a non-terminal symbol, α and β are possibly
empty strings of terminals and non-terminals, and γ is a
non-empty string of terminal and non-terminal symbols.

• There is also an alternative definition through
non-contracting grammars

• A rule of the form S → ϵ is allowed

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 18 / 34
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Context-sensitive grammars
an example

• Can you define a context-sensitive grammar for anbncn?
• Can you define a context-sensitive grammar for
anbmcndm?

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 19 / 34
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Unrestricted grammars

• The most expressive class of languages in the Chomsky
hierarchy is recursively enumerable (RE) languages

• RE languages are those for which there is an algorithm to
enumerate all sentences

• RE languages are generated by unrestricted grammars
• Unrestricted grammars do not limit the rewrite rules in

any way (except LHS cannot be empty)
• Mostly theoretical interest, not much practical use
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A(nother) review of computational complexity
Big-O notation

Big-O notation is used for describing worst-case order of
complexity of algorithms

O(1) constant
O(logn) logarithmic

O(n) linear
O(n logn) log linear

O(n2) quadratic
O(n3) cubic
O(2n) exponential
O(n!) factorial

Given T(n), what is O(n)?

• T(n) = log(5n)

• T(n) = 5n

• T(n) = n+ logn

• T(n) = n2 + 10

• T(n) = n5 + n4

• T(n) = n5 + 4n

• T(n) = n! + 2n

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 21 / 34
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complexity of algorithms

O(1) constant
O(logn) logarithmic

O(n) linear
O(n logn) log linear

O(n2) quadratic
O(n3) cubic
O(2n) exponential
O(n!) factorial

Given T(n), what is O(n)?
• T(n) = log(5n)

• T(n) = 5n

• T(n) = n+ logn

• T(n) = n2 + 10

• T(n) = n5 + n4
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Big-O notation and order of complexity
the picture
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Big-O notation and order of complexity
the picture (with log y-axis)
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A(nother) review of computational complexity
P, NP, NP-complete and all that

• A major division of complexity classes according to Big-O
notation is between

P polynomial time algorithms
NP non-deterministic polynomial time algorithms

• A big question in computing is whether P = NP
• All problems in NP can be reduced in polynomial time to a

problem in a subclass of NP, (NP-complete)
– Solving an NP complete problem in P would mean proving

P = NP

Video from https://www.youtube.com/watch?v=YX40hbAHx3s
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Grammars and automata

Language Grammar Automata

Regular Regular Finite-state
Context-free Context-free Push-down
Context-sensitive Context-sensitive Linear-bounded
Recursively-enumerable Unrestricted Turing machines
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RE languages and Turing machines

• Recursively enumerable languages can be generated by
Turing machines

• Turing machine is an simple model of computation that
can compute any computable function

– A Turing machine manipulates symbols on an infinite tape,
using a finite table of rules

• A Turing machine can enumerate all string defined by an
unrestricted phrase structure grammar

• The membership problem of RE languages is not decidable
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Context-sensitive languages and LBA

• Context-sensitive languages can be generated using a
restricted form of Turing machine, called linear-bounded
automata

• Although decidable, recognition of a string with a
context-sensitive grammar is computationally intractable
(PSPACE-complete)
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Context-free languages and pushdown automata

• Context-free languages are recognized by pushdown
automata

• Pushdown automata consist of a finite-state control
mechanism and a stack

• Computationally feasible solutions exists for many
problems related to context-free grammars

• There are polynomial time algorithms for recognizing
strings of context-free languages (we will return to these in
lectures on parsing)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 28 / 34



Practical matters Formal languages Languages and Complexity Formal & natural languages

Regular languages and FSA

• Regular languages can be recognized using finite-state
automata (FSA)

• A FSA consist of a finite set of states with directed edges
between them

• Edges are labeled with the terminal symbols, and tell the
automation to which state to move on a given input symbol

0start 1 2
a

b

c
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Chomsky hierarchy and natural language syntax
Where do natural languages fit?

• The class of grammars adequate for formally describing
natural languages has been an important question for
(computational) linguistics

• For the most part, context-free grammars are enough, but
there are some examples, e.g., from Swiss German (Shieber
1985)
Jan säit das…

…mer em Hans es huss hälfed aastriiche
…we Hans (dat) the house (acc) helped paint

Note that this resembles anbmcndm.
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Where do natural languages fit?
the picture

• Often a superset of CF
languages, mildly
context-sensitive languages
are considered adequate

• Note, though, we do not
even need full RE
expressivity

• Modern/computational
theories of grammars
range from mildly CS
(TAG, CCG) to Turing
complete (HPSG, LFG?)

Regular

Context Free

Context Sensitive

Recursively Enumerable
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Learnability natural languages
language acquisition & nature vs. nurture

• A central question in linguistics have been about
‘learnability’ of the languages

• Some linguists claim that natural languages are not
learnable, hence, humans born with a innate language
acquisition device

• A poplar theory of the language acquisition device is called
principles and parameters

• This has created a long-lasting debate, which is also related
to even longer-lasting debate on nature vs. nurture
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Formal languages and learnability

• Some of the arguments in the learnability debate has been
based on results on formal languages

• It is shown (Gold 1967) that none of the languages in the
Chomsky hierarchy are learnable from positive input

• The applicability of such results to human language
acquisition is questionable

• Computational modeling/experiments may help here
(another job for computational linguists)

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 33 / 34



Practical matters Formal languages Languages and Complexity Formal & natural languages

Wrapping up

• Formal languages has a central role in the theory of
computation, as well as in formal/computational
linguistics

• Practically-useful classes of languages in Chomsky
hierarchy is regular and context-free languages (we will
return to these in more detail)

• Natural language syntax can be described mostly by CFGs

Next:
• Finite state automata
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References

References / additional reading material

• The classic reference for theory of computation is Hopcroft
and Ullman (1979) (and its successive editions)

• Sipser (2006) is another good textbook on the topic
• A popular nativist account of language acquisition debate

is Pinker (1994)
• A popular non-nativist (somewhat empiricist) book on

language acquisition is Clark and Lappin (2011), which
also covers discussion of (Gold 1967) and later work
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