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Introduction DFA NFA Regular languages Minimization Regular expressions

Why study finite-state automata?

• Unlike some of the abstract machines we discussed,
finite-state automata are efficient models of computation

• There are many applications
– Electronic circuit design
– Workflow management
– Games
– Pattern matching
– …

But More importantly ;)
– Tokenization, stemming
– Morphological analysis
– Shallow parsing/chunking
– …
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Finite-state automata (FSA)

• A finite-state machine is in one of a finite-number of states
in a given time

• The machine changes its state based on its input
• Every regular language is generated/recognized by an FSA
• Every FSA generates/recognizes a regular language
• Two flavors:

– Deterministic finite automata (DFA)
– Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.
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DFA as a graph

• States are represented as
nodes

• Transitions are shown by
the edges, labeled with
symbols from an alphabet

• One of the states is marked
as the initial state

• Some states are accepting
states
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DFA: formal definition

Formally, a finite state automaton, M, is a tuple (Σ,Q,q0, F,∆)
with

Σ is the alphabet, a finite set of symbols
Q a finite set of states
q0 is the start state, q0 ∈ Q

F is the set of final states, F ⊆ Q

∆ is a function that takes a state and a symbol in the
alphabet, and returns another state (∆ : Q× Σ → Q)

At any given time, for any input,
a DFA has a single well-defined action to take.
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DFA: formal definition
an example

Σ = {a,b}

Q = {q0,q1,q2}

q0 = q0

F = {q2}

∆ = {(q0,a) → q2,
(q0,b) → q1,
(q1,a) → q2,
(q1,b) → q1}
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Another note on DFA

• Is this FSA deterministic?
• To make all transitions

well-defined, we can add a
sink (or error) state

• For brevity, we skip the
explicit error state

– In that case, when we
reach a dead end,
recognition fails
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DFA: the transition table

transition table

symbol
a b→0 2 1

st
at

e 1 2 1
*2 ∅ ∅

3 3 3

→ marks the start state
* marks the accepting

state(s)
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DFA recognition
1. Start at q0

2. Process an input symbol,
move accordingly

3. Accept if in a final state at
the end of the input

• What is the
complexity of the
algorithm?

• How about inputs:
– bbbb
– aa
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A few questions

• What is the language
recognized by this FSA?

• Can you draw a simpler
DFA for the same
language?

• Draw a DFA recognizing
strings with even number
of ‘a’s over Σ = {a,b}
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Non-deterministic finite automata
Formal definition

A non-deterministic finite state automaton, M, is a tuple
(Σ,Q,q0, F,∆) with

Σ is the alphabet, a finite set of symbols
Q a finite set of states
q0 is the start state, q0 ∈ Q

F is the set of final states, F ⊆ Q

∆ is a function from (Q,Σ) to P(Q), power set of Q
(∆ : Q× Σ → P(Q))
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An example NFA
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a,b

a
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transition table

symbol
a b→0 0,1 0,1

st
at

e 1 1,2 1
*2 0,2 0

• We have nondeterminism, e.g., if the first input is a, we
need to choose between states 0 or 1

• Transition table cells have sets of states
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Dealing with non-determinism

• Follow one of the links, store alternatives, and backtrack on
failure

• Follow all options in parallel
• Use dynamic programming (e.g., as in chart parsing)
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NFA recognition
as search (with backtracking)
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Input: a b a

Agenda

1. Start at q0

2. Take the next input, place
all possible actions to an
agenda

3. Get the next action from
the agenda, act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state &

agenda empty
Backtrack otherwise
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NFA recognition as search
summary

• Worst time complexity is exponential
– Complexity is worse if we want to enumerate all derivations

• We used a stack as agenda, performing a depth-first search
• A queue would result in breadth-first search
• If we have a reasonable heuristic A* search may be an

option
• Machine learning methods may also guide finding a fast or

the best solution
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NFA recognition
parallel version
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Input: a b a b

1. Start at q0

2. Take the next input, mark all
possible next states

3. If an accepting state is marked
at the end of the input, accept

Note: the process is determin-
istic, and finite-state.
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An exercise
Construct an NFA and a DFA for the language over
Σ = {a,b} where all string end with ab.

NFA: 0 1 2

a,b

a b

DFA: 0 1 2

b

a

a

b

a

b
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One more complication: ϵ transitions

• An extension of NFA, ϵ-NFA, allows moving without
consuming an input symbol, indicated by an ϵ-transition

• Any ϵ-NFA can be converted to an NFA

0
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b
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a
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a

a b

b

a
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ϵ-transitions need attention

0 1 2

3

4

b

a a

b,ϵϵ

a

b

• How does the (depth-first) NFA recognition algorithm we
described earlier work on this automaton?
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NFA–DFA equivalence

• The language recognized by every NFA is recognized by
some DFA

• The set of DFA is a subset of the set of NFA (a DFA is also
an NFA)

• The same is true for ϵ-NFA
• All recognize/generate regular languages
• NFA can automatically be converted to the equivalent DFA
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Why do we use an NFA then?
• NFA (or ϵ-NFA) are often easier to construct

– Intuitive for humans
– Some representations are easy to convert to NFA rather

than DFA, e.g., regular expressions
• NFA may require less memory (fewer states)

A quick exercise – and a not-so-quick one

1. Construct (draw) an NFA for the language over
Σ = {a,b}, such that 4th symbol from the end is an a

0 1 2 3 4

a,b

a a,b a,b a,b

2. Construct a DFA for the same language
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Determinization
the subset construction

Intuition: remember the parallel NFA recognition. We can
consider an NFA being a deterministic machine which is
at a set of states at any given time.

• Subset construction (sometimes called powerset
construction) uses this intuition to convert an NFA to a
DFA

• The algorithm can be modified to handle ϵ-transitions (or
we can eliminate ϵ’s as a pre-processing step)
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The subset construction
by example

0

1

2

a,b a,b

a,b

a

a

a,b

transition table with subsets

symbol
a b

∅ ∅ ∅→ {0} {0, 1} {0, 1}
{1} {1, 2} {1}

* {2} {0, 2} {0}

{0, 1} {0, 1, 2} {0, 1}
* {0, 2} {0, 1, 2} {0, 1}
* {1, 2} {0, 1, 2} {0, 1}

* {0, 1, 2} {0, 1, 2} {0, 1}
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The subset construction
by example: the resulting DFA

transition table without useless/inaccessible states

symbol
a b→ {0} {0, 1} {0, 1}

{0, 1} {0, 1, 2} {0, 1}
* {0, 1, 2} {0, 1, 2} {0, 1}

0 01 012
a,b

b
a

b

a

Do you remember the set of states marked during parallel NFA recognition?
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The subset construction
by example: side by side

NFA

0

1

2

a,b a,b

a,b

a

aa,b

DFA

0

1

2

a,b

b

ab

a

• What language do they recognize?
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The subset construction
wrapping up

• In worst case, resulting DFA has 2n nodes
• Worst case is rather rare, in practice number of nodes in an

NFA and the converted DFA are often similar
• In practice, we do not need to enumerate all 2n subsets
• We’ve already seen a typical problematic case:

0 1 2 3 4

a,b

a a,b a,b a,b

• We can also skip the unreachable states during subset
construction
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Yet another exercise

Determinize the following automaton

NFA: 0 1 2

a,b

a b
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Regular languages: definition

A regular grammar is a tuple G = (Σ,N,S,R) where
Σ is an alphabet of terminal symbols
N are a set of non-terminal symbols
S is a special ‘start’ symbol ∈ N

R is a set of rewrite rules following one of the following
patterns (A,B ∈ N, a ∈ Σ, ϵ is the empty string)

Left regular

1. A → a

2. A → Ba

3. A → ϵ

Right regular

1. A → a

2. A → aB

3. A → ϵ
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Regular languages: another definition

A language is regular if there is an FSA that recognizes it

• We denote the language recognized by a finite state
automaton M, as L(M)

• The above definition reformulated: if a language L is
regular, there is a DFA M, such that L(M) = L

• Remember: any NFA (with or without ϵ transitions) can be
converted to a DFA
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Some operations on regular languages (and FSA)

L1L2 Concatenation of two languages L1 and L2: any sentence of
L1 followed by any sentence of L2

L∗ Kleene star of L: L concatenated by itself 0 or more times
LR Reverse of L: reverse of any string in L

L Complement of L: all strings in Σ∗
L except the ones in L

(Σ∗
L − L)

L1 ∪ L2 Union of languages L1 and L2: strings that are in any of the
languages

L1 ∩ L2 Intersection of languages L1 and L2: strings that are in both
languages

Regular languages are closed under all of these operations.
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Two example FSA
what languages do they accept?

L1 = L(M1)

0 1

b
a

a

bM1

Odd number of
a’s over {a,b}.

L2 = L(M2)

M2

0 1

a
b

b

a

Odd number of
b’s over {a,b}.

We will use these languages and automata for demonstration.
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Concatenation
L1

0 1

b
a

a

b

L2

0 1

a
b

b

a

L1L2

0 1 2 3

b
a

a

b

ϵ

a
b

b

a
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Kleene star

L1

0 1

b
a

a

b

L∗1

0 1

b
a

a

b

ϵ
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Reversal

L1

0 1

b
a

a

b

LR1

0 1

b

a

a
b
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Complement

L1

0 1

b
a

a

b

L1

0 1

b
a

a

b
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Union

L1 ∪ L2

0’

01 11

b
a

a

b

02 12

a
b

b

a

ϵ

ϵ
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Intersection

L1

L2

L1 ∩ L2

0

1

b

a a

b

0 1

a

b
b

a

00 01

10 11

b
b

b
b

a a a a

…or

L1 ∩ L2 = L1 ∪ L2
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Closure properties of regular languages

• Since results of all the operations we studied are FSA:
Regular languages are closed under

– Concatenation
– Kleene star
– Reversal
– Complement
– Union
– Intersection
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Is a language regular?
— or not

• To show that a language is regular, it is sufficient to find an
FSA that recognizes it.

• Showing that a language is not regular is more involved
• We will study a method based on pumping lemma
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Pumping lemma
intuition

a b c d e
k

l

m

• What is the length of longest string generated by this FSA?
• Any FSA generating an infinite language has to have a loop

(application of recursive rule(s) in the grammar)
• Part of every string longer than some number will include

repetition of the same substring (‘cklm’ above)
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Pumping lemma
definition

For every regular language L, there exist an integer p such that
a string x ∈ L can be factored as x = uvw,

• uviw ∈ L, ∀i ⩾ 0

• v ̸= ϵ

• |uv| ⩽ p

a b c d e
k

l

m

u

v

w

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 40 / 53

Introduction DFA NFA Regular languages Minimization Regular expressions

How to use pumping lemma

• We use pumping lemma to prove that a language is not
regular

• Proof is by contradiction:
– Assume the language is regular
– Find a string x in the language, for all splits of x = uvw, at

least one of the pumping lemma conditions does not hold
• uviw ∈ L (∀i ⩾ 0)
• v ̸= ϵ

• |uv| ⩽ p
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Pumping lemma example
prove L = anbn is not regular

• Assume L is regular: there must be a p such that, if uvw is
in the language

1. uviw ∈ L (∀i ⩾ 0)
2. v ̸= ϵ

3. |uv| ⩽ p

• Pick the string apbp

• For the sake of example, assume p = 5, x = aaaaabbbbb

• Three different ways to split

a︸︷︷︸
u

aaa︸︷︷︸
v

abbbbb︸ ︷︷ ︸
w

violates 1

aaaa︸ ︷︷ ︸
u

ab︸︷︷︸
v

bbbb︸ ︷︷ ︸
w

violates 1 & 3

aaaaab︸ ︷︷ ︸
u

bbb︸︷︷︸
v

b︸︷︷︸
w

violates 1 & 3
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DFA minimization

• For any regular language, there is a unique minimal DFA
• By finding the minimal DFA, we can also prove

equivalence (or not) of different FSA
• In general the idea is:

– Throw away unreachable states (easy)
– Merge equivalent states

• There are two well-known algorithms for minimization:
– Hopcroft’s algorithm: find and eliminate equivalent states

by partitioning the set of states
– Brzozowski’s algorithm: ‘double reversal’
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Finding equivalent states
Intuition

0

1

2

3

4

5
a

b

c

a

b
c

a

b

c

a
b

c

a

b

c

a

b

c

a,b b, c

c

a

The edges leaving the group of nodes are identical.
Their right languages are the same.
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Minimization by partitioning

0 1 2

3 4 5

a

b
a

b a

b

a

b

a

ba

b

03 1

2

45

a

b

a

b

a

ba

b

• Accepting & non-accepting states
form a partition
Q2 = {0, 1, 2, 3}, Q2 = {4, 5}

• If any two nodes go to different sets
for any of the symbols split

• Q1 = {0, 3}, Q3 = {1}, Q4 = {2}, Q2 = {4, 5}

• Stop when we cannot split any of the
sets
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Minimization by partitioning
tabular version

0 1 2

3 4 5

a

b
a

b a

b

a

b

a

ba

b

03 1

2

45

a

b

a

b

a

ba

b

1

• Create a state-by-state table, mark
distinguishable pairs: (q1, q2) such that
(∆(q1, x),∆(q2, x)) is a distinguishable
pair for any x ∈ Σ

1
2
3
4
5

0 1 2 3 4

• Merge indistinguishable states

• The algorithm can be improved by
choosing which cell to visit carefully
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Brzozowski’s algorithm
double reverse (r), determinize (d)

M

0

1

2

3

b

a

b

a
a,b

r(
M

)

0

1

2

3

b

a

b

a
a,b

d
(r
(M

))
01

∅

2

a b

a

b

r(
d
(r
(M

))
)

01

∅

2

a b

a

b

d(r(d(r(M))))

01 2 ∅

b

a a,b
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Minimization algorithms
final remarks

• There are many versions of the ‘partitioning’ algorithm.
General idea is to form equivalence classes based on
right-language of each state.

• Partitionin algorithm has O(n logn) complexity
• ‘Double reversal’ algorithm has exponential worst-time

complexity
• Double reversal algorithm can also be used with NFA’s

(resulting in the minimal equivalent DFA – NFA
minimization is intractable)

• In practice, there is no clear winner, different algorithms
run faster on different input
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Regular expressions
• Another way to specify a regular language (RL) is use of

regular expressions (RE)
• Every RL can be expressed by a RE, and every RE defines a

RL
• A RE x defines a RL L(x)
• Relations between RE and RL

– L(∅) = ∅,
– L(ϵ) = ϵ,
– L(a) = a

– L(ab) = L(a)L(b)
– L(a*) = L(a)∗

– L(a|b) = L(a) ∪ L(b)
(some author use the
notation a+b, we will use
a|b as in many practical
implementations)

where, a,b ∈ Σ, ϵ is empty string, ∅ is the language that
accepts nothing (e.g., Σ∗ − Σ∗)

• Note: no stadard complement operation in RE
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Regular
some extensions

• Concatenation (ab), Kleene star (a*) and union (a|b) are
the common operations

• Parentheses can be used to group the sub-expressions.
Otherwise, the priority of the operators as specified above
a|bc* = a|(b(c*))

• In practice some short-hand notations are common

– . = (a1|...|an),
for Σ = {a1, . . . ,an}

– a+ = aa*
– [a-c] = (a|b|c)

– [^a-c] = . - (a|b|c)

– \d = (0|1|...|8|9)

– …

• And some non-regular extensions, like (a*)b\1
(sometimes the term regexp is used for expressions with
non-regular extensions)
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Some properties of regular expressions
Kleene algebra

These identities are often used to simplify regular expressions.

• ϵu = u
• ∅u = ∅
• u(vw) = (uv)w
• ∅* = ϵ

• ϵ* = ϵ

• (u*)* = u*
• u|v = v|u
• u|u = u
• u|∅ = u
• u|ϵ = u
• u|(v|w) = (u|v)|w

• u(v|w) = uv|uw

• (u|v)* = (u*|v*)*

An exercise
Simplify a|ab*

a|ab* = aϵ|ab*
= a(ϵ|b*)
= ab*

Note: most of these follow from set theory, and some can be derived from others.
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Converting between RE and FSA

Converting to NFA is easy:
ab

0 2 3
a b

a*

0

a

a|b

0 2 3
a

b

Note the similarity with operations on
regular languages discussed earlier.

• For more complex
expressions, one can
replace the paths for
individual symbols with
corresponding automata

• Using ϵ transitions may be
ease the task

• The reverse conversion
(from automata to regular
expressions) is also easy:

– identify the patterns on
the left, collapse paths to
single transitions with
regular expressions

Ç. Çöltekin, SfS / University of Tübingen WS 18–19 52 / 53

Introduction DFA NFA Regular languages Minimization Regular expressions

Wrapping up
• FSA and regular expressions express regular languages
• FSA have two flavors: DFA, NFA (or maybe three: ϵ-NFA)
• DFA recognition is linear
• Any NFA can be converted to a DFA (in worst case number

of nodes increase exponentially)
• Regular languages and FSA are closed under

– Concatenation
– Kleene star
– Complement

– Reversal
– Union
– Intersection

• Every FSA has a unique minimal DFA

Next:
• Finite state transducers (FSTs)
• Applications of FSA and FSTs
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